Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296550412> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4296550412 abstract "Image segmentation (IE) in several disciplines of image processing and computer vision is an essential topic. Segmentation splits a picture into the areas or items that it constitutes. Image segmentation may be achieved with many approaches, some easier than others because of sophisticated programming requirements. The most common technique for segmenting pictures is edge detection (ED) based on sudden (locomotive) intensity fluctuations. This paper aims to study edge detection approaches for the division of images and acquired experimental findings, Sobel, Prewitt, Robert, CannyLoG (Laplacian of Gaussian). It is vital to ensure that picture segmentation algorithms deliver correct results quickly and efficiently for computer vision to reach its full potential. Computer vision approaches require more investigation in hierarchical architectural IoT networks created for seeing the world. In this work, the new way to provide joint image detection (JID) algorithm is to provide multi-scaling approaches for edge detection and segmentation using IoT edge computing (EC). This JID-EC method avoids the requirement to choose and track the edge explicitly. This study provides an overview of fundamental ideas, techniques, and algorithms common to segment images and edge detection, focusing on the segmentation and visualization of joint-articular cartilage images. The reason for this failure is that it is an image noise-sensitive high pass filter. The need for improved algorithms to meet a suitable value of low and high thresholds should thus be stressed for picture noise such as a canny edge, and the performance is achieved with an efficiency of 95.2%." @default.
- W4296550412 created "2022-09-21" @default.
- W4296550412 creator A5017832525 @default.
- W4296550412 creator A5020748598 @default.
- W4296550412 creator A5028517540 @default.
- W4296550412 creator A5044885565 @default.
- W4296550412 creator A5070080426 @default.
- W4296550412 creator A5089759185 @default.
- W4296550412 date "2022-09-21" @default.
- W4296550412 modified "2023-09-30" @default.
- W4296550412 title "Research on Edge Detection and Image Segmentation of Cabinet Region Based on Edge Computing Joint Image Detection Algorithm" @default.
- W4296550412 cites W1999966936 @default.
- W4296550412 cites W2085207776 @default.
- W4296550412 cites W2508125504 @default.
- W4296550412 cites W2793942651 @default.
- W4296550412 cites W2809414801 @default.
- W4296550412 cites W2908996122 @default.
- W4296550412 cites W2910854613 @default.
- W4296550412 cites W2945170981 @default.
- W4296550412 cites W2956552064 @default.
- W4296550412 cites W2960187325 @default.
- W4296550412 cites W2990518194 @default.
- W4296550412 cites W2996093627 @default.
- W4296550412 cites W3015282954 @default.
- W4296550412 cites W3034183649 @default.
- W4296550412 cites W3035016310 @default.
- W4296550412 cites W3037555860 @default.
- W4296550412 cites W3049047722 @default.
- W4296550412 cites W3112959725 @default.
- W4296550412 cites W3156424100 @default.
- W4296550412 cites W3157428835 @default.
- W4296550412 cites W3187702056 @default.
- W4296550412 cites W4254905548 @default.
- W4296550412 cites W865336706 @default.
- W4296550412 doi "https://doi.org/10.1142/s0218539322400022" @default.
- W4296550412 hasPublicationYear "2022" @default.
- W4296550412 type Work @default.
- W4296550412 citedByCount "0" @default.
- W4296550412 crossrefType "journal-article" @default.
- W4296550412 hasAuthorship W4296550412A5017832525 @default.
- W4296550412 hasAuthorship W4296550412A5020748598 @default.
- W4296550412 hasAuthorship W4296550412A5028517540 @default.
- W4296550412 hasAuthorship W4296550412A5044885565 @default.
- W4296550412 hasAuthorship W4296550412A5070080426 @default.
- W4296550412 hasAuthorship W4296550412A5089759185 @default.
- W4296550412 hasConcept C115961682 @default.
- W4296550412 hasConcept C124504099 @default.
- W4296550412 hasConcept C14705441 @default.
- W4296550412 hasConcept C154945302 @default.
- W4296550412 hasConcept C182037307 @default.
- W4296550412 hasConcept C193536780 @default.
- W4296550412 hasConcept C25694479 @default.
- W4296550412 hasConcept C29168087 @default.
- W4296550412 hasConcept C30703548 @default.
- W4296550412 hasConcept C31972630 @default.
- W4296550412 hasConcept C41008148 @default.
- W4296550412 hasConcept C63099799 @default.
- W4296550412 hasConcept C65885262 @default.
- W4296550412 hasConcept C89600930 @default.
- W4296550412 hasConcept C9417928 @default.
- W4296550412 hasConceptScore W4296550412C115961682 @default.
- W4296550412 hasConceptScore W4296550412C124504099 @default.
- W4296550412 hasConceptScore W4296550412C14705441 @default.
- W4296550412 hasConceptScore W4296550412C154945302 @default.
- W4296550412 hasConceptScore W4296550412C182037307 @default.
- W4296550412 hasConceptScore W4296550412C193536780 @default.
- W4296550412 hasConceptScore W4296550412C25694479 @default.
- W4296550412 hasConceptScore W4296550412C29168087 @default.
- W4296550412 hasConceptScore W4296550412C30703548 @default.
- W4296550412 hasConceptScore W4296550412C31972630 @default.
- W4296550412 hasConceptScore W4296550412C41008148 @default.
- W4296550412 hasConceptScore W4296550412C63099799 @default.
- W4296550412 hasConceptScore W4296550412C65885262 @default.
- W4296550412 hasConceptScore W4296550412C89600930 @default.
- W4296550412 hasConceptScore W4296550412C9417928 @default.
- W4296550412 hasIssue "05" @default.
- W4296550412 hasLocation W42965504121 @default.
- W4296550412 hasOpenAccess W4296550412 @default.
- W4296550412 hasPrimaryLocation W42965504121 @default.
- W4296550412 hasRelatedWork W1700740617 @default.
- W4296550412 hasRelatedWork W1981132553 @default.
- W4296550412 hasRelatedWork W2088701076 @default.
- W4296550412 hasRelatedWork W2125519506 @default.
- W4296550412 hasRelatedWork W2183053814 @default.
- W4296550412 hasRelatedWork W2351021533 @default.
- W4296550412 hasRelatedWork W2378180619 @default.
- W4296550412 hasRelatedWork W3208182090 @default.
- W4296550412 hasRelatedWork W2182681560 @default.
- W4296550412 hasRelatedWork W3187709876 @default.
- W4296550412 hasVolume "29" @default.
- W4296550412 isParatext "false" @default.
- W4296550412 isRetracted "false" @default.
- W4296550412 workType "article" @default.