Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296554564> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4296554564 abstract "Abstract Computer vision usage in coal mining land use (LU) pattern classification is an exigent application for accurate accuracy. In the context of the satellite image pattern classification, the artificial intelligence (AI) for the development of a deep neural network (DNN), we have expressed an interest in land use (LU) for coal mining activities. Also, this image is addressed an area of interest as a spatial feature pattern that characterises coal mining regions. Moreover, the DNN classification algorithm's performance depends on the quality of the dataset. In the satellite image dataset, these practices of supervised-based learning are used for the accuracy assessment of mining activities area that is categorized into five classes coal area, built-up area, barren area, vegetation area, and water area respectively. The suit of mining activities area is selected from a case study of Talcher, Odisha, India. Further, we have found performances of training, testing, and validation like 88%, 69.7%, and 73.6%, respectively. Also, the overall accuracy is 79.4%. Therefore, the potential of DNNs learning is introduced for LU classification over mining activities area." @default.
- W4296554564 created "2022-09-21" @default.
- W4296554564 creator A5024702909 @default.
- W4296554564 creator A5075338221 @default.
- W4296554564 date "2022-09-12" @default.
- W4296554564 modified "2023-09-26" @default.
- W4296554564 title "A novel model of the deep neural network approach in coal mining surface pattern to assess land use classification using remote sensing image" @default.
- W4296554564 cites W1987570579 @default.
- W4296554564 cites W1995341919 @default.
- W4296554564 cites W1998598901 @default.
- W4296554564 cites W2007295947 @default.
- W4296554564 cites W2023290515 @default.
- W4296554564 cites W2028070629 @default.
- W4296554564 cites W2040870580 @default.
- W4296554564 cites W2042492924 @default.
- W4296554564 cites W2044451987 @default.
- W4296554564 cites W2082583687 @default.
- W4296554564 cites W2108159992 @default.
- W4296554564 cites W2115256808 @default.
- W4296554564 cites W2139280638 @default.
- W4296554564 cites W2142012908 @default.
- W4296554564 cites W2149361972 @default.
- W4296554564 cites W2188581537 @default.
- W4296554564 cites W2283002322 @default.
- W4296554564 cites W2314785379 @default.
- W4296554564 cites W2588074453 @default.
- W4296554564 cites W2791006446 @default.
- W4296554564 cites W2913694414 @default.
- W4296554564 cites W2914429466 @default.
- W4296554564 cites W2920548804 @default.
- W4296554564 doi "https://doi.org/10.21203/rs.3.rs-1980638/v1" @default.
- W4296554564 hasPublicationYear "2022" @default.
- W4296554564 type Work @default.
- W4296554564 citedByCount "0" @default.
- W4296554564 crossrefType "posted-content" @default.
- W4296554564 hasAuthorship W4296554564A5024702909 @default.
- W4296554564 hasAuthorship W4296554564A5075338221 @default.
- W4296554564 hasBestOaLocation W42965545641 @default.
- W4296554564 hasConcept C108583219 @default.
- W4296554564 hasConcept C108615695 @default.
- W4296554564 hasConcept C115961682 @default.
- W4296554564 hasConcept C119857082 @default.
- W4296554564 hasConcept C124101348 @default.
- W4296554564 hasConcept C138885662 @default.
- W4296554564 hasConcept C142724271 @default.
- W4296554564 hasConcept C153180895 @default.
- W4296554564 hasConcept C154945302 @default.
- W4296554564 hasConcept C166957645 @default.
- W4296554564 hasConcept C205649164 @default.
- W4296554564 hasConcept C2776133958 @default.
- W4296554564 hasConcept C2776401178 @default.
- W4296554564 hasConcept C2779343474 @default.
- W4296554564 hasConcept C41008148 @default.
- W4296554564 hasConcept C41895202 @default.
- W4296554564 hasConcept C50644808 @default.
- W4296554564 hasConcept C518851703 @default.
- W4296554564 hasConcept C71924100 @default.
- W4296554564 hasConcept C75294576 @default.
- W4296554564 hasConceptScore W4296554564C108583219 @default.
- W4296554564 hasConceptScore W4296554564C108615695 @default.
- W4296554564 hasConceptScore W4296554564C115961682 @default.
- W4296554564 hasConceptScore W4296554564C119857082 @default.
- W4296554564 hasConceptScore W4296554564C124101348 @default.
- W4296554564 hasConceptScore W4296554564C138885662 @default.
- W4296554564 hasConceptScore W4296554564C142724271 @default.
- W4296554564 hasConceptScore W4296554564C153180895 @default.
- W4296554564 hasConceptScore W4296554564C154945302 @default.
- W4296554564 hasConceptScore W4296554564C166957645 @default.
- W4296554564 hasConceptScore W4296554564C205649164 @default.
- W4296554564 hasConceptScore W4296554564C2776133958 @default.
- W4296554564 hasConceptScore W4296554564C2776401178 @default.
- W4296554564 hasConceptScore W4296554564C2779343474 @default.
- W4296554564 hasConceptScore W4296554564C41008148 @default.
- W4296554564 hasConceptScore W4296554564C41895202 @default.
- W4296554564 hasConceptScore W4296554564C50644808 @default.
- W4296554564 hasConceptScore W4296554564C518851703 @default.
- W4296554564 hasConceptScore W4296554564C71924100 @default.
- W4296554564 hasConceptScore W4296554564C75294576 @default.
- W4296554564 hasLocation W42965545641 @default.
- W4296554564 hasOpenAccess W4296554564 @default.
- W4296554564 hasPrimaryLocation W42965545641 @default.
- W4296554564 hasRelatedWork W2760085659 @default.
- W4296554564 hasRelatedWork W2772371429 @default.
- W4296554564 hasRelatedWork W2774265021 @default.
- W4296554564 hasRelatedWork W2785535669 @default.
- W4296554564 hasRelatedWork W2997541400 @default.
- W4296554564 hasRelatedWork W3156786002 @default.
- W4296554564 hasRelatedWork W3208423683 @default.
- W4296554564 hasRelatedWork W4285183766 @default.
- W4296554564 hasRelatedWork W4311257506 @default.
- W4296554564 hasRelatedWork W4312192474 @default.
- W4296554564 isParatext "false" @default.
- W4296554564 isRetracted "false" @default.
- W4296554564 workType "article" @default.