Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296558712> ?p ?o ?g. }
- W4296558712 endingPage "829" @default.
- W4296558712 startingPage "815" @default.
- W4296558712 abstract "Orthogonal frequency division multiple access (OFDMA) is one of the promising technologies to satisfy the huge access demand and high data-rate requirement of the fifth generation (5G) networks. In this paper, we study the joint beamforming coordination and resource allocation in the downlink multi-cell multiple-input single-output OFDMA (MISO-OFDMA) systems. First, we divide the allocation framework into beamforming coordination and power allocation (BCPA) module and subcarrier allocation (SA) module. Then, we design a multi-agent deep Q-network (MADQN) algorithm for the allocation framework. Furthermore, we propose a MADQN-based transfer learning framework using knowledge distillation, which is called transfer learning-MADQN (TL-MADQN), to improve the adaptability of neural networks for different wireless schemes. TL-MADQN exploits neural networks and their parameters distilled from pre-trained agents and the experience collected from new agents so that the new agents complete their training process effectively and quickly in the new network environment. Finally, we adjust the allocation policy to maximize the sum data-rate for all users by updating the weights of each neural network. Simulation results show that the proposed MADQN algorithm achieves better performance than the baseline algorithms. Moreover, our TL-MADQN framework further improves the convergence speed and data-rate, which validates its effectiveness and superiority." @default.
- W4296558712 created "2022-09-21" @default.
- W4296558712 creator A5016269538 @default.
- W4296558712 creator A5063089557 @default.
- W4296558712 creator A5064295553 @default.
- W4296558712 creator A5073088912 @default.
- W4296558712 creator A5079415912 @default.
- W4296558712 date "2022-01-01" @default.
- W4296558712 modified "2023-10-15" @default.
- W4296558712 title "Deep Transfer Reinforcement Learning for Beamforming and Resource Allocation in Multi-Cell MISO-OFDMA Systems" @default.
- W4296558712 cites W2009498857 @default.
- W4296558712 cites W2015454796 @default.
- W4296558712 cites W2015787227 @default.
- W4296558712 cites W2058841014 @default.
- W4296558712 cites W2071537306 @default.
- W4296558712 cites W2124801067 @default.
- W4296558712 cites W2133203703 @default.
- W4296558712 cites W2145339207 @default.
- W4296558712 cites W2165698076 @default.
- W4296558712 cites W2344446391 @default.
- W4296558712 cites W2345237407 @default.
- W4296558712 cites W2503943026 @default.
- W4296558712 cites W2791279818 @default.
- W4296558712 cites W2792645523 @default.
- W4296558712 cites W2885033069 @default.
- W4296558712 cites W2892547466 @default.
- W4296558712 cites W2908049050 @default.
- W4296558712 cites W2909468610 @default.
- W4296558712 cites W2914403288 @default.
- W4296558712 cites W2921319277 @default.
- W4296558712 cites W2943849267 @default.
- W4296558712 cites W2969465871 @default.
- W4296558712 cites W3002205212 @default.
- W4296558712 cites W3009978309 @default.
- W4296558712 cites W3010311742 @default.
- W4296558712 cites W3013973746 @default.
- W4296558712 cites W3023434827 @default.
- W4296558712 cites W3037207668 @default.
- W4296558712 cites W3046906840 @default.
- W4296558712 cites W3096423797 @default.
- W4296558712 cites W3099153698 @default.
- W4296558712 cites W3104640578 @default.
- W4296558712 cites W3110950218 @default.
- W4296558712 cites W3113734015 @default.
- W4296558712 cites W3116633030 @default.
- W4296558712 cites W3123895149 @default.
- W4296558712 cites W3124168869 @default.
- W4296558712 cites W3125424609 @default.
- W4296558712 cites W3131321252 @default.
- W4296558712 cites W3131852646 @default.
- W4296558712 cites W3158201287 @default.
- W4296558712 cites W3163571828 @default.
- W4296558712 cites W3170956499 @default.
- W4296558712 cites W3172534272 @default.
- W4296558712 cites W3176113203 @default.
- W4296558712 cites W3183478447 @default.
- W4296558712 doi "https://doi.org/10.1109/tsipn.2022.3208432" @default.
- W4296558712 hasPublicationYear "2022" @default.
- W4296558712 type Work @default.
- W4296558712 citedByCount "0" @default.
- W4296558712 crossrefType "journal-article" @default.
- W4296558712 hasAuthorship W4296558712A5016269538 @default.
- W4296558712 hasAuthorship W4296558712A5063089557 @default.
- W4296558712 hasAuthorship W4296558712A5064295553 @default.
- W4296558712 hasAuthorship W4296558712A5073088912 @default.
- W4296558712 hasAuthorship W4296558712A5079415912 @default.
- W4296558712 hasConcept C108037233 @default.
- W4296558712 hasConcept C114237682 @default.
- W4296558712 hasConcept C120314980 @default.
- W4296558712 hasConcept C127162648 @default.
- W4296558712 hasConcept C137246740 @default.
- W4296558712 hasConcept C138660444 @default.
- W4296558712 hasConcept C154945302 @default.
- W4296558712 hasConcept C198329298 @default.
- W4296558712 hasConcept C2775907427 @default.
- W4296558712 hasConcept C29202148 @default.
- W4296558712 hasConcept C31258907 @default.
- W4296558712 hasConcept C40409654 @default.
- W4296558712 hasConcept C41008148 @default.
- W4296558712 hasConcept C50644808 @default.
- W4296558712 hasConcept C54197355 @default.
- W4296558712 hasConcept C555944384 @default.
- W4296558712 hasConcept C76155785 @default.
- W4296558712 hasConcept C97541855 @default.
- W4296558712 hasConceptScore W4296558712C108037233 @default.
- W4296558712 hasConceptScore W4296558712C114237682 @default.
- W4296558712 hasConceptScore W4296558712C120314980 @default.
- W4296558712 hasConceptScore W4296558712C127162648 @default.
- W4296558712 hasConceptScore W4296558712C137246740 @default.
- W4296558712 hasConceptScore W4296558712C138660444 @default.
- W4296558712 hasConceptScore W4296558712C154945302 @default.
- W4296558712 hasConceptScore W4296558712C198329298 @default.
- W4296558712 hasConceptScore W4296558712C2775907427 @default.
- W4296558712 hasConceptScore W4296558712C29202148 @default.
- W4296558712 hasConceptScore W4296558712C31258907 @default.
- W4296558712 hasConceptScore W4296558712C40409654 @default.
- W4296558712 hasConceptScore W4296558712C41008148 @default.
- W4296558712 hasConceptScore W4296558712C50644808 @default.