Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296558727> ?p ?o ?g. }
- W4296558727 endingPage "12" @default.
- W4296558727 startingPage "1" @default.
- W4296558727 abstract "An accurate parameterization of glacier calving is essential for understanding glacier dynamics and constraining ice-sheet models. The increasing availability and quality of remote sensing imagery open the prospect of a continuous and precise mapping of relevant parameters, such as calving front locations. However, it also calls for automated and scalable analysis strategies. Deep neural networks provide powerful tools for processing large quantities of remote sensing data. In this contribution, we assess the benefit of diverse input data for calving front extraction. In particular, we focus on Landsat-8 imagery supplementing single-band inputs with multispectral data, topography, and textural information. We assess the benefit of these three datasets using a dropped-variable approach. The associated reference dataset comprises 728 manually delineated calving front positions of 23 Greenland and two Antarctic outlet glaciers from 2013 to 2021. Resulting feature importance emphasizes both the potential integrating additional input information as well as the significance of their thoughtful selection. We advocate utilizing multispectral features as their integration leads generally to more accurate predictions compared with conventional single-band inputs. This is especially prevalent for challenging ice mélange and illumination conditions. In contrast, the application of both textural and topographic inputs cannot be recommended without reservation, since they may lead to model overfitting. The results of this assessment are not only relevant for advancing automated calving front extraction but also for a wider range of glaciology-related land surface classification tasks using deep neural networks." @default.
- W4296558727 created "2022-09-21" @default.
- W4296558727 creator A5027529189 @default.
- W4296558727 creator A5042646473 @default.
- W4296558727 creator A5064422296 @default.
- W4296558727 creator A5083100048 @default.
- W4296558727 creator A5088785122 @default.
- W4296558727 creator A5090588677 @default.
- W4296558727 creator A5090614965 @default.
- W4296558727 creator A5091181661 @default.
- W4296558727 date "2022-01-01" @default.
- W4296558727 modified "2023-10-02" @default.
- W4296558727 title "Extracting Glacier Calving Fronts by Deep Learning: The Benefit of Multispectral, Topographic, and Textural Input Features" @default.
- W4296558727 cites W1179917919 @default.
- W4296558727 cites W1185880853 @default.
- W4296558727 cites W125506480 @default.
- W4296558727 cites W1875061881 @default.
- W4296558727 cites W1989907325 @default.
- W4296558727 cites W1996031526 @default.
- W4296558727 cites W1996546081 @default.
- W4296558727 cites W2012092742 @default.
- W4296558727 cites W2024500585 @default.
- W4296558727 cites W2044465660 @default.
- W4296558727 cites W2061372308 @default.
- W4296558727 cites W2069469192 @default.
- W4296558727 cites W2100046288 @default.
- W4296558727 cites W2105821048 @default.
- W4296558727 cites W2108424583 @default.
- W4296558727 cites W2115380778 @default.
- W4296558727 cites W2125184169 @default.
- W4296558727 cites W2127449685 @default.
- W4296558727 cites W2138226280 @default.
- W4296558727 cites W2339377392 @default.
- W4296558727 cites W2621107660 @default.
- W4296558727 cites W2756297478 @default.
- W4296558727 cites W2766425600 @default.
- W4296558727 cites W2775508103 @default.
- W4296558727 cites W2782522152 @default.
- W4296558727 cites W2898086840 @default.
- W4296558727 cites W2900220325 @default.
- W4296558727 cites W2901464108 @default.
- W4296558727 cites W2911964244 @default.
- W4296558727 cites W2914411150 @default.
- W4296558727 cites W2964060211 @default.
- W4296558727 cites W2975184127 @default.
- W4296558727 cites W2982461770 @default.
- W4296558727 cites W2995568124 @default.
- W4296558727 cites W3002782576 @default.
- W4296558727 cites W3013325738 @default.
- W4296558727 cites W3040206949 @default.
- W4296558727 cites W3092668659 @default.
- W4296558727 cites W3095808832 @default.
- W4296558727 cites W3105758293 @default.
- W4296558727 cites W3115319128 @default.
- W4296558727 cites W3128023179 @default.
- W4296558727 cites W3135352607 @default.
- W4296558727 cites W4206925574 @default.
- W4296558727 cites W4248571769 @default.
- W4296558727 doi "https://doi.org/10.1109/tgrs.2022.3208454" @default.
- W4296558727 hasPublicationYear "2022" @default.
- W4296558727 type Work @default.
- W4296558727 citedByCount "4" @default.
- W4296558727 countsByYear W42965587272023 @default.
- W4296558727 crossrefType "journal-article" @default.
- W4296558727 hasAuthorship W4296558727A5027529189 @default.
- W4296558727 hasAuthorship W4296558727A5042646473 @default.
- W4296558727 hasAuthorship W4296558727A5064422296 @default.
- W4296558727 hasAuthorship W4296558727A5083100048 @default.
- W4296558727 hasAuthorship W4296558727A5088785122 @default.
- W4296558727 hasAuthorship W4296558727A5090588677 @default.
- W4296558727 hasAuthorship W4296558727A5090614965 @default.
- W4296558727 hasAuthorship W4296558727A5091181661 @default.
- W4296558727 hasConcept C100834320 @default.
- W4296558727 hasConcept C108583219 @default.
- W4296558727 hasConcept C114793014 @default.
- W4296558727 hasConcept C127313418 @default.
- W4296558727 hasConcept C154945302 @default.
- W4296558727 hasConcept C173163844 @default.
- W4296558727 hasConcept C2778102629 @default.
- W4296558727 hasConcept C41008148 @default.
- W4296558727 hasConcept C62649853 @default.
- W4296558727 hasConceptScore W4296558727C100834320 @default.
- W4296558727 hasConceptScore W4296558727C108583219 @default.
- W4296558727 hasConceptScore W4296558727C114793014 @default.
- W4296558727 hasConceptScore W4296558727C127313418 @default.
- W4296558727 hasConceptScore W4296558727C154945302 @default.
- W4296558727 hasConceptScore W4296558727C173163844 @default.
- W4296558727 hasConceptScore W4296558727C2778102629 @default.
- W4296558727 hasConceptScore W4296558727C41008148 @default.
- W4296558727 hasConceptScore W4296558727C62649853 @default.
- W4296558727 hasFunder F4320320876 @default.
- W4296558727 hasFunder F4320325698 @default.
- W4296558727 hasLocation W42965587271 @default.
- W4296558727 hasOpenAccess W4296558727 @default.
- W4296558727 hasPrimaryLocation W42965587271 @default.
- W4296558727 hasRelatedWork W125506480 @default.
- W4296558727 hasRelatedWork W1583400091 @default.
- W4296558727 hasRelatedWork W2019714000 @default.