Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296591844> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4296591844 abstract "Content-based news recommenders learn words that correlate with user engagement and recommend articles accordingly. This can be problematic for users with diverse political preferences by topic — e.g., users that prefer conservative articles on one topic but liberal articles on another. In such instances, recommenders can have a homogenizing effect by recommending articles with the same political lean on both topics, particularly if both topics share salient, politically polarized terms like “far right” or “radical left.” In this paper, we propose attention-based neural network models to reduce this homogenization effect by increasing attention on words that are topic specific while decreasing attention on polarized, topic-general terms. We find that the proposed approach results in more accurate recommendations for simulated users with such diverse preferences." @default.
- W4296591844 created "2022-09-22" @default.
- W4296591844 creator A5011178134 @default.
- W4296591844 creator A5026428776 @default.
- W4296591844 creator A5034718687 @default.
- W4296591844 creator A5038378351 @default.
- W4296591844 creator A5077153113 @default.
- W4296591844 date "2022-09-13" @default.
- W4296591844 modified "2023-09-29" @default.
- W4296591844 title "Reducing Cross-Topic Political Homogenization in Content-Based News Recommendation" @default.
- W4296591844 cites W1119807432 @default.
- W4296591844 cites W2102968466 @default.
- W4296591844 cites W2137809006 @default.
- W4296591844 cites W2470673105 @default.
- W4296591844 cites W2765564115 @default.
- W4296591844 cites W2897125675 @default.
- W4296591844 cites W2903803738 @default.
- W4296591844 cites W2906610138 @default.
- W4296591844 cites W2908826212 @default.
- W4296591844 cites W2942765639 @default.
- W4296591844 cites W2950416834 @default.
- W4296591844 cites W2950768109 @default.
- W4296591844 cites W2958300421 @default.
- W4296591844 cites W2966344724 @default.
- W4296591844 cites W2970793364 @default.
- W4296591844 cites W2979826702 @default.
- W4296591844 cites W2988777870 @default.
- W4296591844 cites W2989182874 @default.
- W4296591844 cites W2996935963 @default.
- W4296591844 cites W2997837569 @default.
- W4296591844 cites W3001221685 @default.
- W4296591844 cites W3011271423 @default.
- W4296591844 cites W3034108861 @default.
- W4296591844 cites W3037713666 @default.
- W4296591844 cites W3120179032 @default.
- W4296591844 cites W3122253487 @default.
- W4296591844 cites W3154538081 @default.
- W4296591844 cites W3155368131 @default.
- W4296591844 cites W3175797936 @default.
- W4296591844 cites W3189967866 @default.
- W4296591844 cites W4210509099 @default.
- W4296591844 cites W4240828654 @default.
- W4296591844 cites W4299687421 @default.
- W4296591844 doi "https://doi.org/10.1145/3523227.3546782" @default.
- W4296591844 hasPublicationYear "2022" @default.
- W4296591844 type Work @default.
- W4296591844 citedByCount "1" @default.
- W4296591844 countsByYear W42965918442023 @default.
- W4296591844 crossrefType "proceedings-article" @default.
- W4296591844 hasAuthorship W4296591844A5011178134 @default.
- W4296591844 hasAuthorship W4296591844A5026428776 @default.
- W4296591844 hasAuthorship W4296591844A5034718687 @default.
- W4296591844 hasAuthorship W4296591844A5038378351 @default.
- W4296591844 hasAuthorship W4296591844A5077153113 @default.
- W4296591844 hasConcept C130217890 @default.
- W4296591844 hasConcept C154945302 @default.
- W4296591844 hasConcept C171686336 @default.
- W4296591844 hasConcept C17744445 @default.
- W4296591844 hasConcept C18903297 @default.
- W4296591844 hasConcept C199539241 @default.
- W4296591844 hasConcept C23123220 @default.
- W4296591844 hasConcept C2778722038 @default.
- W4296591844 hasConcept C2780719617 @default.
- W4296591844 hasConcept C41008148 @default.
- W4296591844 hasConcept C66402592 @default.
- W4296591844 hasConcept C86803240 @default.
- W4296591844 hasConcept C94625758 @default.
- W4296591844 hasConceptScore W4296591844C130217890 @default.
- W4296591844 hasConceptScore W4296591844C154945302 @default.
- W4296591844 hasConceptScore W4296591844C171686336 @default.
- W4296591844 hasConceptScore W4296591844C17744445 @default.
- W4296591844 hasConceptScore W4296591844C18903297 @default.
- W4296591844 hasConceptScore W4296591844C199539241 @default.
- W4296591844 hasConceptScore W4296591844C23123220 @default.
- W4296591844 hasConceptScore W4296591844C2778722038 @default.
- W4296591844 hasConceptScore W4296591844C2780719617 @default.
- W4296591844 hasConceptScore W4296591844C41008148 @default.
- W4296591844 hasConceptScore W4296591844C66402592 @default.
- W4296591844 hasConceptScore W4296591844C86803240 @default.
- W4296591844 hasConceptScore W4296591844C94625758 @default.
- W4296591844 hasLocation W42965918441 @default.
- W4296591844 hasOpenAccess W4296591844 @default.
- W4296591844 hasPrimaryLocation W42965918441 @default.
- W4296591844 hasRelatedWork W2024691726 @default.
- W4296591844 hasRelatedWork W2086064646 @default.
- W4296591844 hasRelatedWork W2103241481 @default.
- W4296591844 hasRelatedWork W2326619756 @default.
- W4296591844 hasRelatedWork W2357241418 @default.
- W4296591844 hasRelatedWork W2370554703 @default.
- W4296591844 hasRelatedWork W2909085234 @default.
- W4296591844 hasRelatedWork W2944636446 @default.
- W4296591844 hasRelatedWork W3080191145 @default.
- W4296591844 hasRelatedWork W4290928156 @default.
- W4296591844 isParatext "false" @default.
- W4296591844 isRetracted "false" @default.
- W4296591844 workType "article" @default.