Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296593491> ?p ?o ?g. }
- W4296593491 endingPage "2221" @default.
- W4296593491 startingPage "2209" @default.
- W4296593491 abstract "Abstract Within the National Weather Service’s Unified Forecast System (UFS), snow depth and snow cover observations are assimilated once daily using a rule-based method designed to correct for gross errors. While this approach improved the forecasts over its predecessors, it is now quite outdated and is likely to result in suboptimal analysis. We have then implemented and evaluated a snow data assimilation using the 2D optimal interpolation (OI) method, which accounts for model and observation errors and their spatial correlations as a function of distances between the observations and model grid cells. The performance of the OI was evaluated by assimilating daily snow depth observations from the Global Historical Climatology Network (GHCN) and the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover data into the UFS, from October 2019 to March 2020. Compared to the control analysis, which is very similar to the method currently in operational use, the OI improves the forecast snow depth and snow cover. For instance, the unbiased snow depth root-mean-squared error (ubRMSE) was reduced by 45 mm and the snow cover hit rate increased by 4%. This leads to modest improvements to globally averaged near-surface temperature (an average reduction of 0.23 K in temperature bias), with significant local improvements in some regions (much of Asia, the central United States). The reduction in near-surface temperature error was primarily caused by improved snow cover fraction from the data assimilation. Based on these results, the OI DA is currently being transitioned into operational use for the UFS. Significance Statement Weather and climate forecasting systems rely on accurate modeling of the evolution of atmospheric, oceanic, and land processes. In addition, model forecasts are substantially improved by continuous incorporation of observations to models, through a process called data assimilation. In this work, we upgraded the snow data assimilation used in the U.S. National Weather Service (NWS) global weather prediction system. Compared to the method currently in operational use, the new snow data assimilation improves both the forecasted snow quantity and near-surface air temperatures over snowy regions. Based on the positive results obtained in the experiments presented here, the new snow data assimilation method is being implemented in the NWS operational forecast system." @default.
- W4296593491 created "2022-09-22" @default.
- W4296593491 creator A5010978959 @default.
- W4296593491 creator A5040572676 @default.
- W4296593491 date "2022-12-01" @default.
- W4296593491 modified "2023-09-27" @default.
- W4296593491 title "An Optimal Interpolation–Based Snow Data Assimilation for NOAA’s Unified Forecast System (UFS)" @default.
- W4296593491 cites W1533384740 @default.
- W4296593491 cites W1983832403 @default.
- W4296593491 cites W1994007254 @default.
- W4296593491 cites W2005101964 @default.
- W4296593491 cites W2013772744 @default.
- W4296593491 cites W2039274523 @default.
- W4296593491 cites W2044710267 @default.
- W4296593491 cites W2054476892 @default.
- W4296593491 cites W2069760107 @default.
- W4296593491 cites W2075009291 @default.
- W4296593491 cites W2076340991 @default.
- W4296593491 cites W2085672189 @default.
- W4296593491 cites W2100335374 @default.
- W4296593491 cites W2119007429 @default.
- W4296593491 cites W2126468629 @default.
- W4296593491 cites W2166196619 @default.
- W4296593491 cites W2167414301 @default.
- W4296593491 cites W2170532703 @default.
- W4296593491 cites W2345230351 @default.
- W4296593491 cites W2469805270 @default.
- W4296593491 cites W2546902198 @default.
- W4296593491 cites W2561619973 @default.
- W4296593491 cites W2898424106 @default.
- W4296593491 cites W2903946907 @default.
- W4296593491 cites W2925990915 @default.
- W4296593491 cites W2945004086 @default.
- W4296593491 cites W2947165775 @default.
- W4296593491 cites W2979582497 @default.
- W4296593491 cites W2987560761 @default.
- W4296593491 cites W3010247462 @default.
- W4296593491 cites W3025949386 @default.
- W4296593491 cites W3047725858 @default.
- W4296593491 cites W3082847268 @default.
- W4296593491 cites W3104786346 @default.
- W4296593491 cites W3111637895 @default.
- W4296593491 cites W3111784356 @default.
- W4296593491 cites W3205604731 @default.
- W4296593491 cites W3212610045 @default.
- W4296593491 cites W3213907219 @default.
- W4296593491 cites W4243942560 @default.
- W4296593491 doi "https://doi.org/10.1175/waf-d-22-0061.1" @default.
- W4296593491 hasPublicationYear "2022" @default.
- W4296593491 type Work @default.
- W4296593491 citedByCount "0" @default.
- W4296593491 crossrefType "journal-article" @default.
- W4296593491 hasAuthorship W4296593491A5010978959 @default.
- W4296593491 hasAuthorship W4296593491A5040572676 @default.
- W4296593491 hasConcept C105795698 @default.
- W4296593491 hasConcept C121684516 @default.
- W4296593491 hasConcept C127313418 @default.
- W4296593491 hasConcept C137800194 @default.
- W4296593491 hasConcept C139945424 @default.
- W4296593491 hasConcept C153294291 @default.
- W4296593491 hasConcept C197046000 @default.
- W4296593491 hasConcept C205649164 @default.
- W4296593491 hasConcept C24552861 @default.
- W4296593491 hasConcept C2983043445 @default.
- W4296593491 hasConcept C33923547 @default.
- W4296593491 hasConcept C39432304 @default.
- W4296593491 hasConcept C41008148 @default.
- W4296593491 hasConcept C49204034 @default.
- W4296593491 hasConcept C502989409 @default.
- W4296593491 hasConceptScore W4296593491C105795698 @default.
- W4296593491 hasConceptScore W4296593491C121684516 @default.
- W4296593491 hasConceptScore W4296593491C127313418 @default.
- W4296593491 hasConceptScore W4296593491C137800194 @default.
- W4296593491 hasConceptScore W4296593491C139945424 @default.
- W4296593491 hasConceptScore W4296593491C153294291 @default.
- W4296593491 hasConceptScore W4296593491C197046000 @default.
- W4296593491 hasConceptScore W4296593491C205649164 @default.
- W4296593491 hasConceptScore W4296593491C24552861 @default.
- W4296593491 hasConceptScore W4296593491C2983043445 @default.
- W4296593491 hasConceptScore W4296593491C33923547 @default.
- W4296593491 hasConceptScore W4296593491C39432304 @default.
- W4296593491 hasConceptScore W4296593491C41008148 @default.
- W4296593491 hasConceptScore W4296593491C49204034 @default.
- W4296593491 hasConceptScore W4296593491C502989409 @default.
- W4296593491 hasFunder F4320317452 @default.
- W4296593491 hasIssue "12" @default.
- W4296593491 hasLocation W42965934911 @default.
- W4296593491 hasOpenAccess W4296593491 @default.
- W4296593491 hasPrimaryLocation W42965934911 @default.
- W4296593491 hasRelatedWork W1538302247 @default.
- W4296593491 hasRelatedWork W1987033298 @default.
- W4296593491 hasRelatedWork W2008935173 @default.
- W4296593491 hasRelatedWork W2041887742 @default.
- W4296593491 hasRelatedWork W2047228190 @default.
- W4296593491 hasRelatedWork W2136335719 @default.
- W4296593491 hasRelatedWork W2380645478 @default.
- W4296593491 hasRelatedWork W2507570964 @default.
- W4296593491 hasRelatedWork W2544880408 @default.