Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296626148> ?p ?o ?g. }
- W4296626148 endingPage "595" @default.
- W4296626148 startingPage "590" @default.
- W4296626148 abstract "When using machine learning for quality prediction in injection molding, feature processing is an important step in data preparation to improve the quality of model prediction. The objective of this study was to evaluate the prediction performance of different feature extraction algorithms compared to more common feature selection. Two test specimens, each with two recorded quality features, were produced in six different injection molding process states, resulting in 11.720 injection cycles as the data base. Depending on the process state, R² of up to 0.99 could be achieved. Nevertheless, the results show that feature selection is preferable for feature processing." @default.
- W4296626148 created "2022-09-23" @default.
- W4296626148 creator A5022801531 @default.
- W4296626148 creator A5027402304 @default.
- W4296626148 creator A5031086661 @default.
- W4296626148 date "2022-01-01" @default.
- W4296626148 modified "2023-09-26" @default.
- W4296626148 title "Analysis of feature extraction algorithms for quality prediction using machine learning in injection molding" @default.
- W4296626148 cites W1964357740 @default.
- W4296626148 cites W2009069239 @default.
- W4296626148 cites W2052619287 @default.
- W4296626148 cites W2066059053 @default.
- W4296626148 cites W2140095548 @default.
- W4296626148 cites W2177066871 @default.
- W4296626148 cites W2290190822 @default.
- W4296626148 cites W2321986009 @default.
- W4296626148 cites W2802246562 @default.
- W4296626148 cites W2883308961 @default.
- W4296626148 cites W2904130266 @default.
- W4296626148 cites W2911964244 @default.
- W4296626148 cites W2954836522 @default.
- W4296626148 cites W3000409346 @default.
- W4296626148 cites W3011156038 @default.
- W4296626148 cites W3097899516 @default.
- W4296626148 cites W3104887532 @default.
- W4296626148 cites W3110108372 @default.
- W4296626148 cites W3133379890 @default.
- W4296626148 cites W3144558234 @default.
- W4296626148 cites W3157957523 @default.
- W4296626148 cites W4205699531 @default.
- W4296626148 doi "https://doi.org/10.1016/j.procir.2022.09.059" @default.
- W4296626148 hasPublicationYear "2022" @default.
- W4296626148 type Work @default.
- W4296626148 citedByCount "0" @default.
- W4296626148 crossrefType "journal-article" @default.
- W4296626148 hasAuthorship W4296626148A5022801531 @default.
- W4296626148 hasAuthorship W4296626148A5027402304 @default.
- W4296626148 hasAuthorship W4296626148A5031086661 @default.
- W4296626148 hasBestOaLocation W42966261481 @default.
- W4296626148 hasConcept C110120631 @default.
- W4296626148 hasConcept C111472728 @default.
- W4296626148 hasConcept C111919701 @default.
- W4296626148 hasConcept C11413529 @default.
- W4296626148 hasConcept C119857082 @default.
- W4296626148 hasConcept C124101348 @default.
- W4296626148 hasConcept C127413603 @default.
- W4296626148 hasConcept C138885662 @default.
- W4296626148 hasConcept C148483581 @default.
- W4296626148 hasConcept C153180895 @default.
- W4296626148 hasConcept C154945302 @default.
- W4296626148 hasConcept C159985019 @default.
- W4296626148 hasConcept C192562407 @default.
- W4296626148 hasConcept C2776401178 @default.
- W4296626148 hasConcept C2779530757 @default.
- W4296626148 hasConcept C2780566776 @default.
- W4296626148 hasConcept C41008148 @default.
- W4296626148 hasConcept C41895202 @default.
- W4296626148 hasConcept C52622490 @default.
- W4296626148 hasConcept C67558686 @default.
- W4296626148 hasConcept C78519656 @default.
- W4296626148 hasConcept C98045186 @default.
- W4296626148 hasConceptScore W4296626148C110120631 @default.
- W4296626148 hasConceptScore W4296626148C111472728 @default.
- W4296626148 hasConceptScore W4296626148C111919701 @default.
- W4296626148 hasConceptScore W4296626148C11413529 @default.
- W4296626148 hasConceptScore W4296626148C119857082 @default.
- W4296626148 hasConceptScore W4296626148C124101348 @default.
- W4296626148 hasConceptScore W4296626148C127413603 @default.
- W4296626148 hasConceptScore W4296626148C138885662 @default.
- W4296626148 hasConceptScore W4296626148C148483581 @default.
- W4296626148 hasConceptScore W4296626148C153180895 @default.
- W4296626148 hasConceptScore W4296626148C154945302 @default.
- W4296626148 hasConceptScore W4296626148C159985019 @default.
- W4296626148 hasConceptScore W4296626148C192562407 @default.
- W4296626148 hasConceptScore W4296626148C2776401178 @default.
- W4296626148 hasConceptScore W4296626148C2779530757 @default.
- W4296626148 hasConceptScore W4296626148C2780566776 @default.
- W4296626148 hasConceptScore W4296626148C41008148 @default.
- W4296626148 hasConceptScore W4296626148C41895202 @default.
- W4296626148 hasConceptScore W4296626148C52622490 @default.
- W4296626148 hasConceptScore W4296626148C67558686 @default.
- W4296626148 hasConceptScore W4296626148C78519656 @default.
- W4296626148 hasConceptScore W4296626148C98045186 @default.
- W4296626148 hasLocation W42966261481 @default.
- W4296626148 hasLocation W42966261482 @default.
- W4296626148 hasOpenAccess W4296626148 @default.
- W4296626148 hasPrimaryLocation W42966261481 @default.
- W4296626148 hasRelatedWork W1964120219 @default.
- W4296626148 hasRelatedWork W2000165426 @default.
- W4296626148 hasRelatedWork W2144059113 @default.
- W4296626148 hasRelatedWork W2146076056 @default.
- W4296626148 hasRelatedWork W2385132419 @default.
- W4296626148 hasRelatedWork W2546942002 @default.
- W4296626148 hasRelatedWork W2772780115 @default.
- W4296626148 hasRelatedWork W2811390910 @default.
- W4296626148 hasRelatedWork W3003836766 @default.
- W4296626148 hasRelatedWork W2345184372 @default.
- W4296626148 hasVolume "112" @default.