Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296641110> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4296641110 endingPage "1831" @default.
- W4296641110 startingPage "1831" @default.
- W4296641110 abstract "In this paper, various machine learning algorithms were used in order to predict the evolution of open-angle glaucoma (POAG). The datasets were built containing clinical observations and objective measurements made at the Countess of Chester Hospital in the UK and at the St. Spiridon Hospital of Iași, Romania. Using these datasets, different classification problems were proposed. The evaluation of glaucoma progression was conducted based on parameters such as VFI (Visual field index), MD (Mean Deviation), PSD (Pattern standard deviation), and RNFL (Retinal Nerve Fiber Layer). As classification tools, the following algorithms were used: Multilayer Perceptron, Random Forest, Random Tree, C4.5, k-Nearest Neighbors, Support Vector Machine, and Non-Nested Generalized Exemplars. The best results, with an accuracy of over 90%, were obtained with Multilayer Perceptron and Random Forest algorithms. The NNGE algorithm also proved very useful in creating a hierarchy of the input values according to their influence (weight) on the considered outputs. On the other hand, the decision tree algorithms gave us insight into the logic used in their classification, which is of practical importance in obtaining additional information regarding the rationale behind a certain rule or decision." @default.
- W4296641110 created "2022-09-23" @default.
- W4296641110 creator A5002339046 @default.
- W4296641110 creator A5026703031 @default.
- W4296641110 creator A5029760984 @default.
- W4296641110 creator A5053506192 @default.
- W4296641110 creator A5063576338 @default.
- W4296641110 creator A5082397403 @default.
- W4296641110 date "2022-09-22" @default.
- W4296641110 modified "2023-09-30" @default.
- W4296641110 title "Classification Algorithms Used in Predicting Glaucoma Progression" @default.
- W4296641110 cites W1977793107 @default.
- W4296641110 cites W1994329713 @default.
- W4296641110 cites W2015033457 @default.
- W4296641110 cites W2018058028 @default.
- W4296641110 cites W2033972793 @default.
- W4296641110 cites W2034742711 @default.
- W4296641110 cites W2069603514 @default.
- W4296641110 cites W2160605010 @default.
- W4296641110 cites W2340574160 @default.
- W4296641110 cites W2768930630 @default.
- W4296641110 cites W2911964244 @default.
- W4296641110 cites W2981344511 @default.
- W4296641110 cites W3137349040 @default.
- W4296641110 cites W3158916975 @default.
- W4296641110 cites W3199035829 @default.
- W4296641110 doi "https://doi.org/10.3390/healthcare10101831" @default.
- W4296641110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36292278" @default.
- W4296641110 hasPublicationYear "2022" @default.
- W4296641110 type Work @default.
- W4296641110 citedByCount "4" @default.
- W4296641110 countsByYear W42966411102022 @default.
- W4296641110 countsByYear W42966411102023 @default.
- W4296641110 crossrefType "journal-article" @default.
- W4296641110 hasAuthorship W4296641110A5002339046 @default.
- W4296641110 hasAuthorship W4296641110A5026703031 @default.
- W4296641110 hasAuthorship W4296641110A5029760984 @default.
- W4296641110 hasAuthorship W4296641110A5053506192 @default.
- W4296641110 hasAuthorship W4296641110A5063576338 @default.
- W4296641110 hasAuthorship W4296641110A5082397403 @default.
- W4296641110 hasBestOaLocation W42966411101 @default.
- W4296641110 hasConcept C11413529 @default.
- W4296641110 hasConcept C118487528 @default.
- W4296641110 hasConcept C119857082 @default.
- W4296641110 hasConcept C12267149 @default.
- W4296641110 hasConcept C153180895 @default.
- W4296641110 hasConcept C154945302 @default.
- W4296641110 hasConcept C169258074 @default.
- W4296641110 hasConcept C179717631 @default.
- W4296641110 hasConcept C2778527774 @default.
- W4296641110 hasConcept C41008148 @default.
- W4296641110 hasConcept C50644808 @default.
- W4296641110 hasConcept C60908668 @default.
- W4296641110 hasConcept C71924100 @default.
- W4296641110 hasConcept C84525736 @default.
- W4296641110 hasConceptScore W4296641110C11413529 @default.
- W4296641110 hasConceptScore W4296641110C118487528 @default.
- W4296641110 hasConceptScore W4296641110C119857082 @default.
- W4296641110 hasConceptScore W4296641110C12267149 @default.
- W4296641110 hasConceptScore W4296641110C153180895 @default.
- W4296641110 hasConceptScore W4296641110C154945302 @default.
- W4296641110 hasConceptScore W4296641110C169258074 @default.
- W4296641110 hasConceptScore W4296641110C179717631 @default.
- W4296641110 hasConceptScore W4296641110C2778527774 @default.
- W4296641110 hasConceptScore W4296641110C41008148 @default.
- W4296641110 hasConceptScore W4296641110C50644808 @default.
- W4296641110 hasConceptScore W4296641110C60908668 @default.
- W4296641110 hasConceptScore W4296641110C71924100 @default.
- W4296641110 hasConceptScore W4296641110C84525736 @default.
- W4296641110 hasIssue "10" @default.
- W4296641110 hasLocation W42966411101 @default.
- W4296641110 hasLocation W42966411102 @default.
- W4296641110 hasLocation W42966411103 @default.
- W4296641110 hasLocation W42966411104 @default.
- W4296641110 hasOpenAccess W4296641110 @default.
- W4296641110 hasPrimaryLocation W42966411101 @default.
- W4296641110 hasRelatedWork W2984537336 @default.
- W4296641110 hasRelatedWork W3028499805 @default.
- W4296641110 hasRelatedWork W3135728610 @default.
- W4296641110 hasRelatedWork W3150651898 @default.
- W4296641110 hasRelatedWork W3168994312 @default.
- W4296641110 hasRelatedWork W3202148033 @default.
- W4296641110 hasRelatedWork W4200196661 @default.
- W4296641110 hasRelatedWork W4231578810 @default.
- W4296641110 hasRelatedWork W4321636153 @default.
- W4296641110 hasRelatedWork W4385252953 @default.
- W4296641110 hasVolume "10" @default.
- W4296641110 isParatext "false" @default.
- W4296641110 isRetracted "false" @default.
- W4296641110 workType "article" @default.