Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296662092> ?p ?o ?g. }
- W4296662092 endingPage "128464" @default.
- W4296662092 startingPage "128464" @default.
- W4296662092 abstract "Changes in hydrological processes caused by rapid urbanization lead to the growing incidence of urban flooding, which is a major challenge to urban sustainability. Urban floods have seriously threatened the natural environment and human life. Understanding the spatial patterns and influencing factors of urban flooding has important implications for mitigating urban flood hazards. Previous studies have demonstrated the impact of natural and human factors on urban flooding, but a comprehensive understanding of the mechanisms of urban flooding requires appropriate scales and evidence from multiple cities. In this study, 1201 flood records from 2015 to 2020 in 9 megacities (including Beijing, Tianjin, Shanghai, Xi’an, Nanjing, Wuhan, Guangzhou, Shenzhen, Shenyang) in China were used to investigate the spatial characteristics and driving factors of urban flooding. A combination of multiple stepwise regression and boosted regression tree (BRT) models was used to reveal the flood driving mechanism in megacities. The results indicated that flood events in 9 cities presented an aggregation effect, but the spatial characteristics and kernel density were different between coastal and inland cities. At all scales (1 km, 3 km, 5 km), physical geomorphic features (2D and 3D landscapes) have a high contribution to urban flooding, especially patch density, density of buildings and building shape coefficients. The relative contributions of the 2D and 3D landscape pattern factors increased by 43.8 % and 36.2 % as the grid scale increased from 1 km to 5 km, respectively. However, the relative contributions of topography, meteorology and drainage capacity factors decreased by 47.6 %, 39.0 % and 33.2 %, respectively. At a large scale (5 km), the correlation of driving factors for urban flooding was stronger, and the dominant factors were more obvious. At a small scale (1 km), the contribution of driving factors is relatively average. The scale effect significantly affects urban flooding. which suggests that an appropriate scale can more accurately capture the dominant drivers of urban flooding. Therefore, a novel method that integrates the stepwise regression model and BRT model were presented to quantify the complex relationship between urban flooding and driving factors under various analysis scales. The methods and results proposed by our study provided important insights and perspectives for urban flood risk mitigation and urban planning through multiscale analysis of flood driving mechanisms." @default.
- W4296662092 created "2022-09-23" @default.
- W4296662092 creator A5005864702 @default.
- W4296662092 creator A5019685128 @default.
- W4296662092 creator A5031104908 @default.
- W4296662092 creator A5044626751 @default.
- W4296662092 creator A5057416382 @default.
- W4296662092 creator A5065934108 @default.
- W4296662092 creator A5074747392 @default.
- W4296662092 creator A5080102032 @default.
- W4296662092 creator A5086526120 @default.
- W4296662092 date "2022-10-01" @default.
- W4296662092 modified "2023-10-15" @default.
- W4296662092 title "Spatial characteristics and driving factors of urban flooding in Chinese megacities" @default.
- W4296662092 cites W1498999946 @default.
- W4296662092 cites W1589373952 @default.
- W4296662092 cites W1832811677 @default.
- W4296662092 cites W1983413249 @default.
- W4296662092 cites W1999027583 @default.
- W4296662092 cites W2018654587 @default.
- W4296662092 cites W2047026033 @default.
- W4296662092 cites W2049121120 @default.
- W4296662092 cites W2053812664 @default.
- W4296662092 cites W2066203414 @default.
- W4296662092 cites W2069587466 @default.
- W4296662092 cites W2073018583 @default.
- W4296662092 cites W2087505430 @default.
- W4296662092 cites W2099382815 @default.
- W4296662092 cites W2122211886 @default.
- W4296662092 cites W2123856384 @default.
- W4296662092 cites W2135273229 @default.
- W4296662092 cites W2135695572 @default.
- W4296662092 cites W2166109934 @default.
- W4296662092 cites W2318440313 @default.
- W4296662092 cites W2343667398 @default.
- W4296662092 cites W2475791718 @default.
- W4296662092 cites W2579546808 @default.
- W4296662092 cites W2584647223 @default.
- W4296662092 cites W2591289633 @default.
- W4296662092 cites W2593886895 @default.
- W4296662092 cites W2596300935 @default.
- W4296662092 cites W2732516007 @default.
- W4296662092 cites W2736010022 @default.
- W4296662092 cites W2744033973 @default.
- W4296662092 cites W2765354512 @default.
- W4296662092 cites W2774165974 @default.
- W4296662092 cites W2791940124 @default.
- W4296662092 cites W2794388186 @default.
- W4296662092 cites W2803661416 @default.
- W4296662092 cites W2883871677 @default.
- W4296662092 cites W2897761581 @default.
- W4296662092 cites W2927969288 @default.
- W4296662092 cites W2942047515 @default.
- W4296662092 cites W2969708871 @default.
- W4296662092 cites W2971897573 @default.
- W4296662092 cites W2985609682 @default.
- W4296662092 cites W2990997477 @default.
- W4296662092 cites W2999827172 @default.
- W4296662092 cites W3006494367 @default.
- W4296662092 cites W3007420650 @default.
- W4296662092 cites W3008443588 @default.
- W4296662092 cites W3011949985 @default.
- W4296662092 cites W3023437619 @default.
- W4296662092 cites W3036419035 @default.
- W4296662092 cites W3039130096 @default.
- W4296662092 cites W3044042875 @default.
- W4296662092 cites W3091590701 @default.
- W4296662092 cites W3093069510 @default.
- W4296662092 cites W3107407063 @default.
- W4296662092 cites W3111565204 @default.
- W4296662092 cites W3135356637 @default.
- W4296662092 cites W3158715754 @default.
- W4296662092 cites W3180411819 @default.
- W4296662092 cites W3189916451 @default.
- W4296662092 cites W3207080327 @default.
- W4296662092 cites W3217077968 @default.
- W4296662092 cites W4205265994 @default.
- W4296662092 cites W4210287559 @default.
- W4296662092 cites W4214632487 @default.
- W4296662092 cites W4230113864 @default.
- W4296662092 cites W4238729911 @default.
- W4296662092 cites W588320544 @default.
- W4296662092 doi "https://doi.org/10.1016/j.jhydrol.2022.128464" @default.
- W4296662092 hasPublicationYear "2022" @default.
- W4296662092 type Work @default.
- W4296662092 citedByCount "16" @default.
- W4296662092 countsByYear W42966620922022 @default.
- W4296662092 countsByYear W42966620922023 @default.
- W4296662092 crossrefType "journal-article" @default.
- W4296662092 hasAuthorship W4296662092A5005864702 @default.
- W4296662092 hasAuthorship W4296662092A5019685128 @default.
- W4296662092 hasAuthorship W4296662092A5031104908 @default.
- W4296662092 hasAuthorship W4296662092A5044626751 @default.
- W4296662092 hasAuthorship W4296662092A5057416382 @default.
- W4296662092 hasAuthorship W4296662092A5065934108 @default.
- W4296662092 hasAuthorship W4296662092A5074747392 @default.
- W4296662092 hasAuthorship W4296662092A5080102032 @default.
- W4296662092 hasAuthorship W4296662092A5086526120 @default.