Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296704470> ?p ?o ?g. }
- W4296704470 abstract "Metagenomic classifiers are widely used for the taxonomic profiling of metagenomics data and estimation of taxa relative abundance. Small subunit rRNA genes are a gold standard for phylogenetic resolution of microbiota, although the power of this marker comes down to its use as full-length. We aimed at identifying the tools that can efficiently lead to taxonomic resolution down to the species level. To reach this goal, we benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then compiled the best tools (BBTools, FastQC, SortMeRNA, MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2's Sklearn classifier) to build a pipeline called RiboTaxa. Using metagenomics datasets, RiboTaxa gave the best results compared to other tools (i.e. Kraken2, Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA, MEGAN) with precise taxonomic identification and relative abundance description without false positive detection (F-measure of 100% and 83.7% at genus level and species level, respectively). Using real datasets from various environments (i.e. ocean, soil, human gut) and from different approaches (e.g. metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not discerned by current bioinformatics analysis opening new biological perspectives in human and environmental health." @default.
- W4296704470 created "2022-09-23" @default.
- W4296704470 creator A5002447097 @default.
- W4296704470 creator A5069277012 @default.
- W4296704470 creator A5089597721 @default.
- W4296704470 date "2022-07-09" @default.
- W4296704470 modified "2023-10-10" @default.
- W4296704470 title "RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties" @default.
- W4296704470 cites W1513515886 @default.
- W4296704470 cites W1519266993 @default.
- W4296704470 cites W1577826155 @default.
- W4296704470 cites W1703384511 @default.
- W4296704470 cites W1847253990 @default.
- W4296704470 cites W1963957860 @default.
- W4296704470 cites W1988925586 @default.
- W4296704470 cites W2004798786 @default.
- W4296704470 cites W2031992077 @default.
- W4296704470 cites W2045449780 @default.
- W4296704470 cites W2051395158 @default.
- W4296704470 cites W2051838613 @default.
- W4296704470 cites W2059237622 @default.
- W4296704470 cites W2083044106 @default.
- W4296704470 cites W2087671769 @default.
- W4296704470 cites W2103546861 @default.
- W4296704470 cites W2113168385 @default.
- W4296704470 cites W2113925621 @default.
- W4296704470 cites W2116895571 @default.
- W4296704470 cites W2120902911 @default.
- W4296704470 cites W2124799197 @default.
- W4296704470 cites W2124927293 @default.
- W4296704470 cites W2127175247 @default.
- W4296704470 cites W2127303481 @default.
- W4296704470 cites W2127322768 @default.
- W4296704470 cites W2131026689 @default.
- W4296704470 cites W2132944857 @default.
- W4296704470 cites W2136879569 @default.
- W4296704470 cites W2137107630 @default.
- W4296704470 cites W2142678478 @default.
- W4296704470 cites W2148455687 @default.
- W4296704470 cites W2153137490 @default.
- W4296704470 cites W2157539385 @default.
- W4296704470 cites W2157929705 @default.
- W4296704470 cites W2159954944 @default.
- W4296704470 cites W2254734290 @default.
- W4296704470 cites W2258031998 @default.
- W4296704470 cites W2339327716 @default.
- W4296704470 cites W2345658906 @default.
- W4296704470 cites W2513506562 @default.
- W4296704470 cites W2612975255 @default.
- W4296704470 cites W2761430568 @default.
- W4296704470 cites W2789627023 @default.
- W4296704470 cites W2794776675 @default.
- W4296704470 cites W2794904294 @default.
- W4296704470 cites W2802266517 @default.
- W4296704470 cites W2807194798 @default.
- W4296704470 cites W2885972398 @default.
- W4296704470 cites W2889178232 @default.
- W4296704470 cites W2897603717 @default.
- W4296704470 cites W2910615673 @default.
- W4296704470 cites W2950682748 @default.
- W4296704470 cites W2951160681 @default.
- W4296704470 cites W2968450569 @default.
- W4296704470 cites W2981413553 @default.
- W4296704470 cites W2985109597 @default.
- W4296704470 cites W2985711816 @default.
- W4296704470 cites W2989965654 @default.
- W4296704470 cites W2990618091 @default.
- W4296704470 cites W2990919242 @default.
- W4296704470 cites W3005246435 @default.
- W4296704470 cites W3009533854 @default.
- W4296704470 cites W3011678041 @default.
- W4296704470 cites W3012317318 @default.
- W4296704470 cites W3014034696 @default.
- W4296704470 cites W3018615967 @default.
- W4296704470 cites W3019706413 @default.
- W4296704470 cites W3041266236 @default.
- W4296704470 cites W3081636769 @default.
- W4296704470 cites W3088955078 @default.
- W4296704470 cites W3097237112 @default.
- W4296704470 cites W3111703543 @default.
- W4296704470 cites W3128892236 @default.
- W4296704470 cites W3131598995 @default.
- W4296704470 cites W3133550758 @default.
- W4296704470 cites W3137955457 @default.
- W4296704470 cites W3143063265 @default.
- W4296704470 cites W3153334459 @default.
- W4296704470 cites W3154460093 @default.
- W4296704470 cites W3156763462 @default.
- W4296704470 cites W3157172305 @default.
- W4296704470 cites W3159504416 @default.
- W4296704470 cites W3162300015 @default.
- W4296704470 cites W3184541229 @default.
- W4296704470 cites W3213533802 @default.
- W4296704470 cites W4200147705 @default.
- W4296704470 cites W4283262943 @default.
- W4296704470 doi "https://doi.org/10.1093/nargab/lqac070" @default.
- W4296704470 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36159175" @default.
- W4296704470 hasPublicationYear "2022" @default.
- W4296704470 type Work @default.
- W4296704470 citedByCount "0" @default.