Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296707116> ?p ?o ?g. }
- W4296707116 endingPage "11" @default.
- W4296707116 startingPage "1" @default.
- W4296707116 abstract "Object counting has attracted a lot of attention in remote sensing image analysis. In density map based object counting algorithms, the ground truth density maps generated by fix-sized Gaussian kernels ignore the spatial features of the objects. In this paper, an Adaptive Density Map Assisted Learning algorithm (ADMAL) is proposed, which taps into spatial features of the objects from the beginning phase of ground truth density map generation. ADMAL consists of two networks: a Contexture Aware Density Map Generation (CADMG) network and a Transformer-based Density Map Estimation (TDME) network. The CADMG network is designed to generate a ground truth density map from each annotated point map. Comparing with Gaussian convolved density maps, the ground truth density maps generated by CADMG will be tailored according to the texture and neighborhood relationship among objects, which can promote the learning effect of the TDME network. TDME is the core network for object counting. The backbone of the TDME network adopts a Swin transformer structure, the self-attention mechanism of which possesses a larger receptive field for effective feature extraction in remote sensing images. Comprehensive experiments prove that the ground truth density map generated by CADMG can help various density map estimation networks achieve better training effects, among which TDME achieves the best performances. Moreover, the ADMAL algorithm can achieve preferable object counting performances for both satellite-based image and drone-based image. Code and pre-trained models are available at https://github.com/gcding/ADMAL-pytorch." @default.
- W4296707116 created "2022-09-23" @default.
- W4296707116 creator A5013319307 @default.
- W4296707116 creator A5038822089 @default.
- W4296707116 creator A5054023521 @default.
- W4296707116 creator A5073217181 @default.
- W4296707116 creator A5078800429 @default.
- W4296707116 creator A5085142676 @default.
- W4296707116 date "2022-01-01" @default.
- W4296707116 modified "2023-10-12" @default.
- W4296707116 title "Object Counting for Remote-Sensing Images via Adaptive Density Map-Assisted Learning" @default.
- W4296707116 cites W1976959044 @default.
- W4296707116 cites W1978232622 @default.
- W4296707116 cites W2095537868 @default.
- W4296707116 cites W2194775991 @default.
- W4296707116 cites W2321408197 @default.
- W4296707116 cites W2463631526 @default.
- W4296707116 cites W2570343428 @default.
- W4296707116 cites W2601564443 @default.
- W4296707116 cites W2741077351 @default.
- W4296707116 cites W2895051362 @default.
- W4296707116 cites W2915476573 @default.
- W4296707116 cites W2922282711 @default.
- W4296707116 cites W2922295717 @default.
- W4296707116 cites W295732247 @default.
- W4296707116 cites W2962720716 @default.
- W4296707116 cites W2962832028 @default.
- W4296707116 cites W2962921175 @default.
- W4296707116 cites W2963037989 @default.
- W4296707116 cites W2963499661 @default.
- W4296707116 cites W2963693541 @default.
- W4296707116 cites W2963893037 @default.
- W4296707116 cites W2964209782 @default.
- W4296707116 cites W2966893608 @default.
- W4296707116 cites W2967069910 @default.
- W4296707116 cites W2979826702 @default.
- W4296707116 cites W2982021328 @default.
- W4296707116 cites W2982130202 @default.
- W4296707116 cites W3015536013 @default.
- W4296707116 cites W3034552520 @default.
- W4296707116 cites W3089024309 @default.
- W4296707116 cites W3093105758 @default.
- W4296707116 cites W3112728669 @default.
- W4296707116 cites W3116395294 @default.
- W4296707116 cites W3138516171 @default.
- W4296707116 cites W3170841864 @default.
- W4296707116 cites W639708223 @default.
- W4296707116 doi "https://doi.org/10.1109/tgrs.2022.3208326" @default.
- W4296707116 hasPublicationYear "2022" @default.
- W4296707116 type Work @default.
- W4296707116 citedByCount "0" @default.
- W4296707116 crossrefType "journal-article" @default.
- W4296707116 hasAuthorship W4296707116A5013319307 @default.
- W4296707116 hasAuthorship W4296707116A5038822089 @default.
- W4296707116 hasAuthorship W4296707116A5054023521 @default.
- W4296707116 hasAuthorship W4296707116A5073217181 @default.
- W4296707116 hasAuthorship W4296707116A5078800429 @default.
- W4296707116 hasAuthorship W4296707116A5085142676 @default.
- W4296707116 hasConcept C105795698 @default.
- W4296707116 hasConcept C121332964 @default.
- W4296707116 hasConcept C146849305 @default.
- W4296707116 hasConcept C153180895 @default.
- W4296707116 hasConcept C154945302 @default.
- W4296707116 hasConcept C163716315 @default.
- W4296707116 hasConcept C185429906 @default.
- W4296707116 hasConcept C189508267 @default.
- W4296707116 hasConcept C31972630 @default.
- W4296707116 hasConcept C33923547 @default.
- W4296707116 hasConcept C41008148 @default.
- W4296707116 hasConcept C62520636 @default.
- W4296707116 hasConceptScore W4296707116C105795698 @default.
- W4296707116 hasConceptScore W4296707116C121332964 @default.
- W4296707116 hasConceptScore W4296707116C146849305 @default.
- W4296707116 hasConceptScore W4296707116C153180895 @default.
- W4296707116 hasConceptScore W4296707116C154945302 @default.
- W4296707116 hasConceptScore W4296707116C163716315 @default.
- W4296707116 hasConceptScore W4296707116C185429906 @default.
- W4296707116 hasConceptScore W4296707116C189508267 @default.
- W4296707116 hasConceptScore W4296707116C31972630 @default.
- W4296707116 hasConceptScore W4296707116C33923547 @default.
- W4296707116 hasConceptScore W4296707116C41008148 @default.
- W4296707116 hasConceptScore W4296707116C62520636 @default.
- W4296707116 hasFunder F4320316083 @default.
- W4296707116 hasFunder F4320321001 @default.
- W4296707116 hasLocation W42967071161 @default.
- W4296707116 hasOpenAccess W4296707116 @default.
- W4296707116 hasPrimaryLocation W42967071161 @default.
- W4296707116 hasRelatedWork W126849150 @default.
- W4296707116 hasRelatedWork W1632903234 @default.
- W4296707116 hasRelatedWork W1921586410 @default.
- W4296707116 hasRelatedWork W2144748970 @default.
- W4296707116 hasRelatedWork W2547650990 @default.
- W4296707116 hasRelatedWork W2706905479 @default.
- W4296707116 hasRelatedWork W2716174519 @default.
- W4296707116 hasRelatedWork W2914179169 @default.
- W4296707116 hasRelatedWork W3004045746 @default.
- W4296707116 hasRelatedWork W4281641797 @default.
- W4296707116 hasVolume "60" @default.