Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296736723> ?p ?o ?g. }
- W4296736723 endingPage "109641" @default.
- W4296736723 startingPage "109641" @default.
- W4296736723 abstract "The use of recycled aggregate concrete (RAC) in the construction industry can help to prevent irreparable environmental damages and to mitigate the depletion rate of natural resources. However, the quality of the RAC should be investigated before its practical applications. Compressive strength of the RAC (fRAC′) is one of the most crucial design parameters, which is measured by time-consuming and cost-extensive experiments. One solution to restrict the number of experiments and achieve reliable fRAC′ estimation is through employing machine learning methods, Artificial Bee Colony Expression Programming (ABCEP) is a newly proposed automatic regression technique that is used in this study to predict the fRAC′. For comparison purposes, four extensions of artificial bee colony programming techniques (i.e., Artificial Bee Colony Programming (ABCP), quick Artificial Bee Colony Programming (qABCP), Quick semantic Artificial Bee Colony Programming (qsABCP), and Semantic Artificial Bee Colony Programming (sABCP)) were also served. To analyze the results, the average and best performances of all algorithms, regression analysis, execute run times, Wilcoxon signed-rank test, and the behavior of algorithms dealing with the local optima were investigated. The results show that the ABCEP method is the most effective technique, with the average root mean squared error of 10.36 MPa compared to 16.23 MPa, 10.82 MPa, 17.71 MPa, and 14.20 MPa for the developed ABCP-, qABCP-, qsABCP-, and sABCP-based models, respectively, in colony size of 30. In addition, the run time of this algorithm is remarkably less than the other algorithms." @default.
- W4296736723 created "2022-09-23" @default.
- W4296736723 creator A5008300007 @default.
- W4296736723 creator A5038884691 @default.
- W4296736723 creator A5048244252 @default.
- W4296736723 creator A5055511054 @default.
- W4296736723 creator A5081500824 @default.
- W4296736723 date "2022-11-01" @default.
- W4296736723 modified "2023-10-10" @default.
- W4296736723 title "Application of artificial bee colony programming techniques for predicting the compressive strength of recycled aggregate concrete" @default.
- W4296736723 cites W1145034317 @default.
- W4296736723 cites W1153997393 @default.
- W4296736723 cites W1966592368 @default.
- W4296736723 cites W1967593783 @default.
- W4296736723 cites W1969826978 @default.
- W4296736723 cites W1976202218 @default.
- W4296736723 cites W1978057374 @default.
- W4296736723 cites W1982218566 @default.
- W4296736723 cites W1984327178 @default.
- W4296736723 cites W1984459184 @default.
- W4296736723 cites W1987921373 @default.
- W4296736723 cites W1995384721 @default.
- W4296736723 cites W1998951538 @default.
- W4296736723 cites W2001031829 @default.
- W4296736723 cites W2002720174 @default.
- W4296736723 cites W2013096047 @default.
- W4296736723 cites W2015675036 @default.
- W4296736723 cites W2018582650 @default.
- W4296736723 cites W2019811733 @default.
- W4296736723 cites W2021596724 @default.
- W4296736723 cites W2025648078 @default.
- W4296736723 cites W2026969184 @default.
- W4296736723 cites W2037295808 @default.
- W4296736723 cites W2042013744 @default.
- W4296736723 cites W2051211193 @default.
- W4296736723 cites W2061458604 @default.
- W4296736723 cites W2066768556 @default.
- W4296736723 cites W2068279981 @default.
- W4296736723 cites W2072127453 @default.
- W4296736723 cites W2073497113 @default.
- W4296736723 cites W2075658756 @default.
- W4296736723 cites W2078517924 @default.
- W4296736723 cites W2086114120 @default.
- W4296736723 cites W2087329638 @default.
- W4296736723 cites W2092017253 @default.
- W4296736723 cites W2094400494 @default.
- W4296736723 cites W2113880181 @default.
- W4296736723 cites W2124937094 @default.
- W4296736723 cites W2156414158 @default.
- W4296736723 cites W2169157338 @default.
- W4296736723 cites W2169291349 @default.
- W4296736723 cites W2217122718 @default.
- W4296736723 cites W2221475138 @default.
- W4296736723 cites W2223491879 @default.
- W4296736723 cites W2240074784 @default.
- W4296736723 cites W2257713498 @default.
- W4296736723 cites W2361785229 @default.
- W4296736723 cites W2503963865 @default.
- W4296736723 cites W2533536956 @default.
- W4296736723 cites W2540675512 @default.
- W4296736723 cites W2556156268 @default.
- W4296736723 cites W2586369386 @default.
- W4296736723 cites W2604857083 @default.
- W4296736723 cites W2736559050 @default.
- W4296736723 cites W2753368603 @default.
- W4296736723 cites W2754335710 @default.
- W4296736723 cites W2767507828 @default.
- W4296736723 cites W2770379595 @default.
- W4296736723 cites W2774657610 @default.
- W4296736723 cites W2774692285 @default.
- W4296736723 cites W2776938263 @default.
- W4296736723 cites W2780548293 @default.
- W4296736723 cites W2794137295 @default.
- W4296736723 cites W2800470469 @default.
- W4296736723 cites W2800520013 @default.
- W4296736723 cites W2802408695 @default.
- W4296736723 cites W2873215463 @default.
- W4296736723 cites W2887104628 @default.
- W4296736723 cites W2896644057 @default.
- W4296736723 cites W2902633149 @default.
- W4296736723 cites W2949598766 @default.
- W4296736723 cites W2979505781 @default.
- W4296736723 cites W2996165683 @default.
- W4296736723 cites W3006167972 @default.
- W4296736723 cites W3022638413 @default.
- W4296736723 cites W3039118772 @default.
- W4296736723 cites W3087502403 @default.
- W4296736723 cites W3088690717 @default.
- W4296736723 cites W3204479931 @default.
- W4296736723 doi "https://doi.org/10.1016/j.asoc.2022.109641" @default.
- W4296736723 hasPublicationYear "2022" @default.
- W4296736723 type Work @default.
- W4296736723 citedByCount "6" @default.
- W4296736723 countsByYear W42967367232023 @default.
- W4296736723 crossrefType "journal-article" @default.
- W4296736723 hasAuthorship W4296736723A5008300007 @default.
- W4296736723 hasAuthorship W4296736723A5038884691 @default.
- W4296736723 hasAuthorship W4296736723A5048244252 @default.