Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296746587> ?p ?o ?g. }
Showing items 1 to 37 of
37
with 100 items per page.
- W4296746587 abstract "Subspace clustering has been widely applied to detect meaningful clusters in high-dimensional data spaces. A main challenge in subspace clustering is to quickly calculate a good affinity matrix. ℓ0, ℓ1, ℓ2 or nuclear norm regularization is used to construct the affinity matrix in many subspace clustering methods because of their theoretical guarantees and empirical success. However, they suffer from the following problems: (1) ℓ2 and nuclear norm regularization require very strong assumptions to guarantee a subspace-preserving affinity; (2) although ℓ1 regularization can be guaranteed to give a subspace-preserving affinity under certain conditions, it needs more time to solve a large-scale convex optimization problem; (3) ℓ0 regularization can yield a tradeoff between computationally efficient and subspace-preserving affinity by using the orthogonal matching pursuit (OMP) algorithm, but this still takes more time to search the solution in OMP when the number of data points is large. In order to overcome these problems, we first propose a learned OMP (LOMP) algorithm to learn a single hidden neural network (SHNN) to fast approximate the ℓ0code. We then exploit a sparse subspace clustering method based on ℓ0 code which is fast computed by SHNN. Two sufficient conditions are presented to guarantee that our method can give a subspace-preserving affinity. Experiments on handwritten digit and face clustering show that our method not only quickly computes the ℓ0 code, but also outperforms the relevant subspace clustering methods in clustering results. In particular, our method achieves the state-of-the-art clustering accuracy (94.32%) on MNIST." @default.
- W4296746587 created "2022-09-23" @default.
- W4296746587 creator A5013157782 @default.
- W4296746587 creator A5027835055 @default.
- W4296746587 creator A5056492058 @default.
- W4296746587 date "2017-02-13" @default.
- W4296746587 modified "2023-09-25" @default.
- W4296746587 title "Sparse Subspace Clustering by Learning Approximation ℓ0 Codes" @default.
- W4296746587 doi "https://doi.org/10.1609/aaai.v31i1.10782" @default.
- W4296746587 hasPublicationYear "2017" @default.
- W4296746587 type Work @default.
- W4296746587 citedByCount "2" @default.
- W4296746587 countsByYear W42967465872018 @default.
- W4296746587 countsByYear W42967465872019 @default.
- W4296746587 crossrefType "journal-article" @default.
- W4296746587 hasAuthorship W4296746587A5013157782 @default.
- W4296746587 hasAuthorship W4296746587A5027835055 @default.
- W4296746587 hasAuthorship W4296746587A5056492058 @default.
- W4296746587 hasBestOaLocation W42967465871 @default.
- W4296746587 hasIssue "1" @default.
- W4296746587 hasLocation W42967465871 @default.
- W4296746587 hasOpenAccess W4296746587 @default.
- W4296746587 hasPrimaryLocation W42967465871 @default.
- W4296746587 hasRelatedWork W1775333591 @default.
- W4296746587 hasRelatedWork W2052939876 @default.
- W4296746587 hasRelatedWork W2054807817 @default.
- W4296746587 hasRelatedWork W2087831740 @default.
- W4296746587 hasRelatedWork W2118691601 @default.
- W4296746587 hasRelatedWork W2119875513 @default.
- W4296746587 hasRelatedWork W2184091243 @default.
- W4296746587 hasRelatedWork W2543161807 @default.
- W4296746587 hasRelatedWork W4296746587 @default.
- W4296746587 hasRelatedWork W2606213410 @default.
- W4296746587 hasVolume "31" @default.
- W4296746587 isParatext "false" @default.
- W4296746587 isRetracted "false" @default.
- W4296746587 workType "article" @default.