Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296770655> ?p ?o ?g. }
- W4296770655 endingPage "128198" @default.
- W4296770655 startingPage "128198" @default.
- W4296770655 abstract "Real-time and accurate traffic state identification can provide reference for urban traffic control and guidance. Due to the randomness and complexity of traffic flow, it is difficult to identify the traffic state accurately. The existing researches mainly adopted traffic state feature vectors and machine learning to identify the traffic state. Few studies attempted to use the feature map and deep learning for traffic state recognition. Therefore, this paper proposes a traffic state recognition model based on the traffic state feature map and deep learning. The feature map is a chromatogram form of digital traffic state feature vector. And the deep learning has strong predictive performance in image identification. In the model, the road traffic state feature vector is extracted from the vehicle trajectory data, and the Gram Angle Field (GAF) is adopted to transform the feature vector into feature map. Then, the deep learning algorithm is utilized in traffic state offline classification and online recognition. In the offline training phase, the historical vehicle trajectory data and the DeepCluster algorithm are used to establish the mapping relationship between the feature maps and the traffic states. In the online identification stage, the real-time vehicle trajectory data and CoAtNet algorithm are utilized to identify the current traffic state. In experiments, the proposed model is compared with the Convolutional Neural Network (CNN), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) models using the open vehicle trajectory data of Shanghai North Cross Channel. The results showed that the proposed model achieved the best performance with the accuracy of 92.06% and could provide support for road traffic control and guidance." @default.
- W4296770655 created "2022-09-23" @default.
- W4296770655 creator A5009561109 @default.
- W4296770655 creator A5018612769 @default.
- W4296770655 creator A5030968272 @default.
- W4296770655 creator A5032750577 @default.
- W4296770655 creator A5034575563 @default.
- W4296770655 creator A5038915032 @default.
- W4296770655 date "2022-12-01" @default.
- W4296770655 modified "2023-09-29" @default.
- W4296770655 title "A traffic state recognition model based on feature map and deep learning" @default.
- W4296770655 cites W1896079673 @default.
- W4296770655 cites W1967681834 @default.
- W4296770655 cites W1985986451 @default.
- W4296770655 cites W1993992104 @default.
- W4296770655 cites W2011504567 @default.
- W4296770655 cites W2061062671 @default.
- W4296770655 cites W2064064283 @default.
- W4296770655 cites W2104241372 @default.
- W4296770655 cites W2116546670 @default.
- W4296770655 cites W2156163528 @default.
- W4296770655 cites W2307933510 @default.
- W4296770655 cites W2588954203 @default.
- W4296770655 cites W2591123897 @default.
- W4296770655 cites W2599478506 @default.
- W4296770655 cites W2806611623 @default.
- W4296770655 cites W2810416623 @default.
- W4296770655 cites W2883725317 @default.
- W4296770655 cites W2920918234 @default.
- W4296770655 cites W3036455436 @default.
- W4296770655 cites W3083132947 @default.
- W4296770655 cites W3085332562 @default.
- W4296770655 cites W3126778745 @default.
- W4296770655 cites W4200461742 @default.
- W4296770655 cites W4200483037 @default.
- W4296770655 cites W4210651971 @default.
- W4296770655 cites W994344872 @default.
- W4296770655 doi "https://doi.org/10.1016/j.physa.2022.128198" @default.
- W4296770655 hasPublicationYear "2022" @default.
- W4296770655 type Work @default.
- W4296770655 citedByCount "1" @default.
- W4296770655 countsByYear W42967706552023 @default.
- W4296770655 crossrefType "journal-article" @default.
- W4296770655 hasAuthorship W4296770655A5009561109 @default.
- W4296770655 hasAuthorship W4296770655A5018612769 @default.
- W4296770655 hasAuthorship W4296770655A5030968272 @default.
- W4296770655 hasAuthorship W4296770655A5032750577 @default.
- W4296770655 hasAuthorship W4296770655A5034575563 @default.
- W4296770655 hasAuthorship W4296770655A5038915032 @default.
- W4296770655 hasConcept C108583219 @default.
- W4296770655 hasConcept C121332964 @default.
- W4296770655 hasConcept C12267149 @default.
- W4296770655 hasConcept C1276947 @default.
- W4296770655 hasConcept C13662910 @default.
- W4296770655 hasConcept C138885662 @default.
- W4296770655 hasConcept C153180895 @default.
- W4296770655 hasConcept C154945302 @default.
- W4296770655 hasConcept C207512268 @default.
- W4296770655 hasConcept C2776401178 @default.
- W4296770655 hasConcept C38652104 @default.
- W4296770655 hasConcept C41008148 @default.
- W4296770655 hasConcept C41895202 @default.
- W4296770655 hasConcept C52622490 @default.
- W4296770655 hasConcept C81363708 @default.
- W4296770655 hasConcept C83665646 @default.
- W4296770655 hasConceptScore W4296770655C108583219 @default.
- W4296770655 hasConceptScore W4296770655C121332964 @default.
- W4296770655 hasConceptScore W4296770655C12267149 @default.
- W4296770655 hasConceptScore W4296770655C1276947 @default.
- W4296770655 hasConceptScore W4296770655C13662910 @default.
- W4296770655 hasConceptScore W4296770655C138885662 @default.
- W4296770655 hasConceptScore W4296770655C153180895 @default.
- W4296770655 hasConceptScore W4296770655C154945302 @default.
- W4296770655 hasConceptScore W4296770655C207512268 @default.
- W4296770655 hasConceptScore W4296770655C2776401178 @default.
- W4296770655 hasConceptScore W4296770655C38652104 @default.
- W4296770655 hasConceptScore W4296770655C41008148 @default.
- W4296770655 hasConceptScore W4296770655C41895202 @default.
- W4296770655 hasConceptScore W4296770655C52622490 @default.
- W4296770655 hasConceptScore W4296770655C81363708 @default.
- W4296770655 hasConceptScore W4296770655C83665646 @default.
- W4296770655 hasFunder F4320321001 @default.
- W4296770655 hasLocation W42967706551 @default.
- W4296770655 hasOpenAccess W4296770655 @default.
- W4296770655 hasPrimaryLocation W42967706551 @default.
- W4296770655 hasRelatedWork W2126100045 @default.
- W4296770655 hasRelatedWork W2279398222 @default.
- W4296770655 hasRelatedWork W2336974148 @default.
- W4296770655 hasRelatedWork W2773120646 @default.
- W4296770655 hasRelatedWork W3011074480 @default.
- W4296770655 hasRelatedWork W3156786002 @default.
- W4296770655 hasRelatedWork W3193301557 @default.
- W4296770655 hasRelatedWork W4299822940 @default.
- W4296770655 hasRelatedWork W2187500075 @default.
- W4296770655 hasRelatedWork W2345184372 @default.
- W4296770655 hasVolume "607" @default.
- W4296770655 isParatext "false" @default.
- W4296770655 isRetracted "false" @default.