Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296782979> ?p ?o ?g. }
- W4296782979 endingPage "e005151" @default.
- W4296782979 startingPage "e005151" @default.
- W4296782979 abstract "Background Stimulator of interferon genes (STING) is an innate immune sensor of cytoplasmic double-stranded DNA originating from microorganisms and host cells. The activation of cytosolic DNA-STING pathway in tumor microenvironments is usually linked to more robust adaptive immune responses to tumors, however the intracellular function of STING in regulatory T cells is largely unknown. In the present study, we aimed to explore the contribution of intracellular STING activation to regulatory T cell induction (iTreg) in cervical cancer (CC) microenvironments. Methods Blood samples and tumor specimens were obtained from patients with CC. The intratumoral STING, CCL22, CD8 and forkhead box P3 (FOXP3) expression levels were measured by immunohistochemistry. T cell-specific STING conditional knockout mice (CD4-Cre/STING flox/flox , TKO) were generated, and syngeneic TC-1 tumor model were investigated. The differentiation and molecular regulatory pathway of human and murine iTreg under different treatments were investigated by ex vivo assays, immunoblotting and quantitative PCR. Tumor-associated exosomes (T-EXO) were isolated from CC cell lines and exosomal contents were identified by ELISA and Western blot analysis. The impact of T-EXO on T cell differentiation was tested in in vitro cell culture. Results Increased STING, CCL22 level, FOXP3 + cells but decreased CD8 + cells in tumor tissues predicted poor survival. Tumor-bearing CD4-Cre-STING flox/flox (TKO) mice displayed slower tumor growth tendencies as well as fewer FOXP3 + cells but higher CD8 + cell proportion in tumor tissues than wild-type (WT) mice. Activating of STING signaling cooperated with T cell receptor, interleukin-2 receptor and transforming growth factor-beta (TGF-β) signals to promote CD4 + CD25 high FOXP3 + iTreg differentiation from both human and murine CD4 + -naïve T cells from WT and IFNAR −/− mice but not TKO or IRF3 −/− mice in vitro. Ectopic STING, TBK1 or IRF3 expression promoted iTreg differentiation from human CD4 + -naïve T cells. T cell-intrinsic STING activation induced FOXP3 transcription through TBK1-IRF3-mediated SMAD3 and STAT5 phosphorylation independent of interferon-β. In CC, tumor-derived exosomes activated STING signaling in tumor-infiltrated T cells by exosomal TGF-β, cyclic GMP-AMP synthase and 2’-3’-cGAMP, leading to iTreg expansion. Conclusions These findings highlight a novel mechanism for iTreg expansion mediated by tumor-derived exosome-activated T cell-intrinsic STING signal, and provide a rationale for developing immunotherapeutic strategies targeting STING signal in CC." @default.
- W4296782979 created "2022-09-23" @default.
- W4296782979 creator A5011167317 @default.
- W4296782979 creator A5012630643 @default.
- W4296782979 creator A5028963094 @default.
- W4296782979 creator A5030485357 @default.
- W4296782979 creator A5034488277 @default.
- W4296782979 creator A5037586159 @default.
- W4296782979 creator A5046600167 @default.
- W4296782979 creator A5049293174 @default.
- W4296782979 creator A5057879702 @default.
- W4296782979 creator A5058965019 @default.
- W4296782979 creator A5073390793 @default.
- W4296782979 creator A5074832463 @default.
- W4296782979 creator A5082236009 @default.
- W4296782979 date "2022-09-01" @default.
- W4296782979 modified "2023-10-17" @default.
- W4296782979 title "T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer" @default.
- W4296782979 cites W1673416641 @default.
- W4296782979 cites W1985543189 @default.
- W4296782979 cites W2008096987 @default.
- W4296782979 cites W2026830644 @default.
- W4296782979 cites W2037433323 @default.
- W4296782979 cites W2046640968 @default.
- W4296782979 cites W2132413371 @default.
- W4296782979 cites W2135530652 @default.
- W4296782979 cites W2173816666 @default.
- W4296782979 cites W2293022769 @default.
- W4296782979 cites W2463361290 @default.
- W4296782979 cites W2551567032 @default.
- W4296782979 cites W2564433363 @default.
- W4296782979 cites W2591862469 @default.
- W4296782979 cites W2599642236 @default.
- W4296782979 cites W2613953650 @default.
- W4296782979 cites W2626019299 @default.
- W4296782979 cites W2733430447 @default.
- W4296782979 cites W2749141135 @default.
- W4296782979 cites W2750976328 @default.
- W4296782979 cites W2765492330 @default.
- W4296782979 cites W2796665700 @default.
- W4296782979 cites W2810612816 @default.
- W4296782979 cites W2895243890 @default.
- W4296782979 cites W2897257669 @default.
- W4296782979 cites W2898384169 @default.
- W4296782979 cites W2900458154 @default.
- W4296782979 cites W2904651186 @default.
- W4296782979 cites W2907432112 @default.
- W4296782979 cites W2917646500 @default.
- W4296782979 cites W2944131287 @default.
- W4296782979 cites W2947021030 @default.
- W4296782979 cites W2967805215 @default.
- W4296782979 cites W2973192833 @default.
- W4296782979 cites W2982425966 @default.
- W4296782979 cites W2992697133 @default.
- W4296782979 cites W2993218757 @default.
- W4296782979 cites W2997656567 @default.
- W4296782979 cites W3002686604 @default.
- W4296782979 cites W3005484122 @default.
- W4296782979 cites W3005777482 @default.
- W4296782979 cites W3016738221 @default.
- W4296782979 cites W3024191006 @default.
- W4296782979 cites W3038995504 @default.
- W4296782979 cites W3042467660 @default.
- W4296782979 cites W3045606929 @default.
- W4296782979 cites W3045899263 @default.
- W4296782979 cites W3080399909 @default.
- W4296782979 cites W3095311303 @default.
- W4296782979 cites W3095935122 @default.
- W4296782979 cites W3101474684 @default.
- W4296782979 cites W3131973006 @default.
- W4296782979 cites W3137439833 @default.
- W4296782979 cites W3158027589 @default.
- W4296782979 cites W3211657254 @default.
- W4296782979 cites W4211252841 @default.
- W4296782979 doi "https://doi.org/10.1136/jitc-2022-005151" @default.
- W4296782979 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36126994" @default.
- W4296782979 hasPublicationYear "2022" @default.
- W4296782979 type Work @default.
- W4296782979 citedByCount "10" @default.
- W4296782979 countsByYear W42967829792022 @default.
- W4296782979 countsByYear W42967829792023 @default.
- W4296782979 crossrefType "journal-article" @default.
- W4296782979 hasAuthorship W4296782979A5011167317 @default.
- W4296782979 hasAuthorship W4296782979A5012630643 @default.
- W4296782979 hasAuthorship W4296782979A5028963094 @default.
- W4296782979 hasAuthorship W4296782979A5030485357 @default.
- W4296782979 hasAuthorship W4296782979A5034488277 @default.
- W4296782979 hasAuthorship W4296782979A5037586159 @default.
- W4296782979 hasAuthorship W4296782979A5046600167 @default.
- W4296782979 hasAuthorship W4296782979A5049293174 @default.
- W4296782979 hasAuthorship W4296782979A5057879702 @default.
- W4296782979 hasAuthorship W4296782979A5058965019 @default.
- W4296782979 hasAuthorship W4296782979A5073390793 @default.
- W4296782979 hasAuthorship W4296782979A5074832463 @default.
- W4296782979 hasAuthorship W4296782979A5082236009 @default.
- W4296782979 hasBestOaLocation W42967829791 @default.
- W4296782979 hasConcept C127413603 @default.
- W4296782979 hasConcept C136449434 @default.