Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296784802> ?p ?o ?g. }
- W4296784802 endingPage "12" @default.
- W4296784802 startingPage "1" @default.
- W4296784802 abstract "In the teaching of English, there is an increasing focus on practical communication skills. As a result, the speaking test component has received more and more attention from education experts. With the rapid development of modern computer technology and network technology, the use of computers to assess the quality of spoken English has become a hot topic of research in related fields at present. A machine learning assessment system based on linear predictive coding is proposed in order to achieve automatic scoring of spoken English tests. First, the principle of linear predictive coding and decoding is analyzed, and the traditional linear predictive coding and decoding algorithm is improved by using hybrid excitation instead of the traditional binary excitation. Second, the overall structure of the machine learning assessment system is designed, which mainly includes division into four modules: acoustic model acquisition module, speech recognition module, standard pronunciation transcription module, and decision module. Then, the speech recognition module is implemented by an improved linear predictive speech coding method to acquire the feature parameters of the speech signal and generate the speech feature vector. Finally, the convolutional neural network algorithm is used to train the speech features so as to implement the acoustic model acquisition module. The experimental results show that the improved linear predictive speech coding method yields more natural and higher intelligibility speech signals. The designed machine learning evaluation system is able to accurately detect information about the quality of the learner’s pronunciation." @default.
- W4296784802 created "2022-09-23" @default.
- W4296784802 creator A5064703366 @default.
- W4296784802 date "2022-09-20" @default.
- W4296784802 modified "2023-09-25" @default.
- W4296784802 title "A Machine Learning Assessment System for Spoken English Based on Linear Predictive Coding" @default.
- W4296784802 cites W1504996571 @default.
- W4296784802 cites W1607007852 @default.
- W4296784802 cites W1968863909 @default.
- W4296784802 cites W1975774264 @default.
- W4296784802 cites W1989163463 @default.
- W4296784802 cites W1997436821 @default.
- W4296784802 cites W2002950295 @default.
- W4296784802 cites W2009272428 @default.
- W4296784802 cites W2022125261 @default.
- W4296784802 cites W2035484900 @default.
- W4296784802 cites W2059283098 @default.
- W4296784802 cites W2078409967 @default.
- W4296784802 cites W2137796143 @default.
- W4296784802 cites W2159437158 @default.
- W4296784802 cites W2165677000 @default.
- W4296784802 cites W2184545428 @default.
- W4296784802 cites W2286419477 @default.
- W4296784802 cites W2296679486 @default.
- W4296784802 cites W2333969437 @default.
- W4296784802 cites W2555868198 @default.
- W4296784802 cites W2557460959 @default.
- W4296784802 cites W2792063098 @default.
- W4296784802 cites W2795011886 @default.
- W4296784802 cites W2866575265 @default.
- W4296784802 cites W2918916602 @default.
- W4296784802 cites W2919448963 @default.
- W4296784802 cites W2934676685 @default.
- W4296784802 cites W2943554574 @default.
- W4296784802 cites W2997159305 @default.
- W4296784802 cites W2997700007 @default.
- W4296784802 cites W3010566069 @default.
- W4296784802 cites W3034159666 @default.
- W4296784802 cites W3043920615 @default.
- W4296784802 cites W3080914981 @default.
- W4296784802 cites W3081273159 @default.
- W4296784802 cites W3084032037 @default.
- W4296784802 cites W3111840880 @default.
- W4296784802 cites W3138598836 @default.
- W4296784802 cites W3152844078 @default.
- W4296784802 cites W3159165480 @default.
- W4296784802 cites W3212745809 @default.
- W4296784802 doi "https://doi.org/10.1155/2022/6131572" @default.
- W4296784802 hasPublicationYear "2022" @default.
- W4296784802 type Work @default.
- W4296784802 citedByCount "0" @default.
- W4296784802 crossrefType "journal-article" @default.
- W4296784802 hasAuthorship W4296784802A5064703366 @default.
- W4296784802 hasBestOaLocation W42967848021 @default.
- W4296784802 hasConcept C105964291 @default.
- W4296784802 hasConcept C111472728 @default.
- W4296784802 hasConcept C11413529 @default.
- W4296784802 hasConcept C12267149 @default.
- W4296784802 hasConcept C131109320 @default.
- W4296784802 hasConcept C138885662 @default.
- W4296784802 hasConcept C13895895 @default.
- W4296784802 hasConcept C154945302 @default.
- W4296784802 hasConcept C2780844864 @default.
- W4296784802 hasConcept C28490314 @default.
- W4296784802 hasConcept C41008148 @default.
- W4296784802 hasConcept C41895202 @default.
- W4296784802 hasConcept C57273362 @default.
- W4296784802 hasConcept C59883199 @default.
- W4296784802 hasConcept C60048801 @default.
- W4296784802 hasConcept C61328038 @default.
- W4296784802 hasConcept C81363708 @default.
- W4296784802 hasConceptScore W4296784802C105964291 @default.
- W4296784802 hasConceptScore W4296784802C111472728 @default.
- W4296784802 hasConceptScore W4296784802C11413529 @default.
- W4296784802 hasConceptScore W4296784802C12267149 @default.
- W4296784802 hasConceptScore W4296784802C131109320 @default.
- W4296784802 hasConceptScore W4296784802C138885662 @default.
- W4296784802 hasConceptScore W4296784802C13895895 @default.
- W4296784802 hasConceptScore W4296784802C154945302 @default.
- W4296784802 hasConceptScore W4296784802C2780844864 @default.
- W4296784802 hasConceptScore W4296784802C28490314 @default.
- W4296784802 hasConceptScore W4296784802C41008148 @default.
- W4296784802 hasConceptScore W4296784802C41895202 @default.
- W4296784802 hasConceptScore W4296784802C57273362 @default.
- W4296784802 hasConceptScore W4296784802C59883199 @default.
- W4296784802 hasConceptScore W4296784802C60048801 @default.
- W4296784802 hasConceptScore W4296784802C61328038 @default.
- W4296784802 hasConceptScore W4296784802C81363708 @default.
- W4296784802 hasLocation W42967848021 @default.
- W4296784802 hasOpenAccess W4296784802 @default.
- W4296784802 hasPrimaryLocation W42967848021 @default.
- W4296784802 hasRelatedWork W1572861854 @default.
- W4296784802 hasRelatedWork W1890431648 @default.
- W4296784802 hasRelatedWork W1979693044 @default.
- W4296784802 hasRelatedWork W2020464095 @default.
- W4296784802 hasRelatedWork W2075342421 @default.
- W4296784802 hasRelatedWork W2122760606 @default.
- W4296784802 hasRelatedWork W2142872184 @default.