Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296793630> ?p ?o ?g. }
- W4296793630 endingPage "e0274998" @default.
- W4296793630 startingPage "e0274998" @default.
- W4296793630 abstract "Objective This study used machine learning (ML) to test an empirically derived set of risk factors for marijuana use. Models were built separately for child welfare (CW) and non-CW adolescents in order to compare the variables selected as important features/risk factors. Method Data were from a Time 4 (M age = 18.22) of longitudinal study of the effects of maltreatment on adolescent development (n = 350; CW = 222; non-CW = 128; 56%male). Marijuana use in the past 12 months (none versus any) was obtained from a single item self-report. Risk factors entered into the model included mental health, parent/family social support, peer risk behavior, self-reported risk behavior, self-esteem, and self-reported adversities (e.g., abuse, neglect, witnessing family violence or community violence). Results The ML approaches indicated 80% accuracy in predicting marijuana use in the CW group and 85% accuracy in the non-CW group. In addition, the top features differed for the CW and non-CW groups with peer marijuana use emerging as the most important risk factor for CW youth, whereas externalizing behavior was the most important for the non-CW group. The most important common risk factor between group was gender, with males having higher risk. Conclusions This is the first study to examine the shared and unique risk factors for marijuana use for CW and non-CW youth using a machine learning approach. The results support our assertion that there may be similar risk factors for both groups, but there are also risks unique to each population. Therefore, risk factors derived from normative populations may not have the same importance when used for CW youth. These differences should be considered in clinical practice when assessing risk for substance use among adolescents." @default.
- W4296793630 created "2022-09-24" @default.
- W4296793630 creator A5057585140 @default.
- W4296793630 creator A5068748650 @default.
- W4296793630 creator A5076833341 @default.
- W4296793630 creator A5087538704 @default.
- W4296793630 date "2022-09-21" @default.
- W4296793630 modified "2023-09-26" @default.
- W4296793630 title "Using machine learning to determine the shared and unique risk factors for marijuana use among child-welfare versus community adolescents" @default.
- W4296793630 cites W1511386490 @default.
- W4296793630 cites W1543044436 @default.
- W4296793630 cites W1570898732 @default.
- W4296793630 cites W1665295861 @default.
- W4296793630 cites W1761592956 @default.
- W4296793630 cites W1795144871 @default.
- W4296793630 cites W1796064250 @default.
- W4296793630 cites W1964837511 @default.
- W4296793630 cites W1965773300 @default.
- W4296793630 cites W1970407995 @default.
- W4296793630 cites W1972216005 @default.
- W4296793630 cites W1980519371 @default.
- W4296793630 cites W1981431764 @default.
- W4296793630 cites W1994998726 @default.
- W4296793630 cites W1995317618 @default.
- W4296793630 cites W1996142231 @default.
- W4296793630 cites W1996521103 @default.
- W4296793630 cites W2007307305 @default.
- W4296793630 cites W2008056655 @default.
- W4296793630 cites W2008174859 @default.
- W4296793630 cites W2010783989 @default.
- W4296793630 cites W2012756322 @default.
- W4296793630 cites W2026088031 @default.
- W4296793630 cites W2026340830 @default.
- W4296793630 cites W2029506433 @default.
- W4296793630 cites W2032849380 @default.
- W4296793630 cites W2047426574 @default.
- W4296793630 cites W2048830945 @default.
- W4296793630 cites W2060375736 @default.
- W4296793630 cites W2070396935 @default.
- W4296793630 cites W2083079472 @default.
- W4296793630 cites W2094617054 @default.
- W4296793630 cites W2102581653 @default.
- W4296793630 cites W2109782191 @default.
- W4296793630 cites W2110712129 @default.
- W4296793630 cites W2112193879 @default.
- W4296793630 cites W2117565402 @default.
- W4296793630 cites W2124581501 @default.
- W4296793630 cites W2126292939 @default.
- W4296793630 cites W2130242524 @default.
- W4296793630 cites W2131959398 @default.
- W4296793630 cites W2137918883 @default.
- W4296793630 cites W2138884119 @default.
- W4296793630 cites W2142600436 @default.
- W4296793630 cites W2143462488 @default.
- W4296793630 cites W2155192189 @default.
- W4296793630 cites W2155870673 @default.
- W4296793630 cites W2159313975 @default.
- W4296793630 cites W2159483894 @default.
- W4296793630 cites W2167783241 @default.
- W4296793630 cites W2167951686 @default.
- W4296793630 cites W2242673148 @default.
- W4296793630 cites W2282887873 @default.
- W4296793630 cites W2285849222 @default.
- W4296793630 cites W2305641349 @default.
- W4296793630 cites W2498119267 @default.
- W4296793630 cites W2519105412 @default.
- W4296793630 cites W2539303879 @default.
- W4296793630 cites W2557738935 @default.
- W4296793630 cites W2606184753 @default.
- W4296793630 cites W2625829631 @default.
- W4296793630 cites W2779051611 @default.
- W4296793630 cites W2780185994 @default.
- W4296793630 cites W2789894922 @default.
- W4296793630 cites W2789970635 @default.
- W4296793630 cites W2901609400 @default.
- W4296793630 cites W2910375764 @default.
- W4296793630 cites W2911964244 @default.
- W4296793630 cites W2977350418 @default.
- W4296793630 cites W2989173305 @default.
- W4296793630 cites W3036337730 @default.
- W4296793630 cites W4231752535 @default.
- W4296793630 doi "https://doi.org/10.1371/journal.pone.0274998" @default.
- W4296793630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36129944" @default.
- W4296793630 hasPublicationYear "2022" @default.
- W4296793630 type Work @default.
- W4296793630 citedByCount "0" @default.
- W4296793630 crossrefType "journal-article" @default.
- W4296793630 hasAuthorship W4296793630A5057585140 @default.
- W4296793630 hasAuthorship W4296793630A5068748650 @default.
- W4296793630 hasAuthorship W4296793630A5076833341 @default.
- W4296793630 hasAuthorship W4296793630A5087538704 @default.
- W4296793630 hasBestOaLocation W42967936301 @default.
- W4296793630 hasConcept C118552586 @default.
- W4296793630 hasConcept C12174686 @default.
- W4296793630 hasConcept C126322002 @default.
- W4296793630 hasConcept C128593788 @default.
- W4296793630 hasConcept C138496976 @default.
- W4296793630 hasConcept C142724271 @default.