Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296793944> ?p ?o ?g. }
- W4296793944 abstract "Abstract Background In nasal or sinonasal tumors, orbital invasion beyond periorbita by the tumor is one of the important criteria in the selection of the surgical procedure. We investigated the usefulness of the convolutional neural network (CNN)-based deep learning technique for the diagnosis of orbital invasion, using computed tomography (CT) images. Methods A total of 168 lesions with malignant nasal or sinonasal tumors were divided into a training dataset ( n = 119) and a test dataset ( n = 49). The final diagnosis (invasion-positive or -negative) was determined by experienced radiologists who carefully reviewed all of the CT images. In a CNN-based deep learning analysis, a slice of the square target region that included the orbital bone wall was extracted and fed into a deep-learning training session to create a diagnostic model using transfer learning with the Visual Geometry Group 16 (VGG16) model. The test dataset was subsequently tested in CNN-based diagnostic models and by two other radiologists who were not specialized in head and neck radiology. At approx. 2 months after the first reading session, two radiologists again reviewed all of the images in the test dataset, referring to the diagnoses provided by the trained CNN-based diagnostic model. Results The diagnostic accuracy was 0.92 by the CNN-based diagnostic models, whereas the diagnostic accuracies by the two radiologists at the first reading session were 0.49 and 0.45, respectively. In the second reading session by two radiologists (diagnosing with the assistance by the CNN-based diagnostic model), marked elevations of the diagnostic accuracy were observed (0.94 and 1.00, respectively). Conclusion The CNN-based deep learning technique can be a useful support tool in assessing the presence of orbital invasion on CT images, especially for non-specialized radiologists." @default.
- W4296793944 created "2022-09-24" @default.
- W4296793944 creator A5005371127 @default.
- W4296793944 creator A5034542384 @default.
- W4296793944 creator A5035360381 @default.
- W4296793944 creator A5036497884 @default.
- W4296793944 creator A5049029124 @default.
- W4296793944 creator A5060929910 @default.
- W4296793944 creator A5063484189 @default.
- W4296793944 creator A5065419096 @default.
- W4296793944 creator A5066514747 @default.
- W4296793944 creator A5069813844 @default.
- W4296793944 creator A5076508658 @default.
- W4296793944 creator A5090487329 @default.
- W4296793944 date "2022-09-22" @default.
- W4296793944 modified "2023-10-17" @default.
- W4296793944 title "Utility of the deep learning technique for the diagnosis of orbital invasion on CT in patients with a nasal or sinonasal tumor" @default.
- W4296793944 cites W1970324153 @default.
- W4296793944 cites W1998058979 @default.
- W4296793944 cites W2050984596 @default.
- W4296793944 cites W2057747930 @default.
- W4296793944 cites W2114370237 @default.
- W4296793944 cites W2137246705 @default.
- W4296793944 cites W2153649901 @default.
- W4296793944 cites W2156075048 @default.
- W4296793944 cites W2610165157 @default.
- W4296793944 cites W2725984455 @default.
- W4296793944 cites W2767236661 @default.
- W4296793944 cites W2917654900 @default.
- W4296793944 cites W2992477198 @default.
- W4296793944 cites W3010456429 @default.
- W4296793944 cites W3080225817 @default.
- W4296793944 cites W3094637982 @default.
- W4296793944 cites W3123472351 @default.
- W4296793944 cites W3158653447 @default.
- W4296793944 cites W3166877082 @default.
- W4296793944 cites W3202535786 @default.
- W4296793944 doi "https://doi.org/10.1186/s40644-022-00492-0" @default.
- W4296793944 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36138422" @default.
- W4296793944 hasPublicationYear "2022" @default.
- W4296793944 type Work @default.
- W4296793944 citedByCount "4" @default.
- W4296793944 countsByYear W42967939442022 @default.
- W4296793944 countsByYear W42967939442023 @default.
- W4296793944 crossrefType "journal-article" @default.
- W4296793944 hasAuthorship W4296793944A5005371127 @default.
- W4296793944 hasAuthorship W4296793944A5034542384 @default.
- W4296793944 hasAuthorship W4296793944A5035360381 @default.
- W4296793944 hasAuthorship W4296793944A5036497884 @default.
- W4296793944 hasAuthorship W4296793944A5049029124 @default.
- W4296793944 hasAuthorship W4296793944A5060929910 @default.
- W4296793944 hasAuthorship W4296793944A5063484189 @default.
- W4296793944 hasAuthorship W4296793944A5065419096 @default.
- W4296793944 hasAuthorship W4296793944A5066514747 @default.
- W4296793944 hasAuthorship W4296793944A5069813844 @default.
- W4296793944 hasAuthorship W4296793944A5076508658 @default.
- W4296793944 hasAuthorship W4296793944A5090487329 @default.
- W4296793944 hasBestOaLocation W42967939441 @default.
- W4296793944 hasConcept C108583219 @default.
- W4296793944 hasConcept C126838900 @default.
- W4296793944 hasConcept C136764020 @default.
- W4296793944 hasConcept C141071460 @default.
- W4296793944 hasConcept C154945302 @default.
- W4296793944 hasConcept C2779182362 @default.
- W4296793944 hasConcept C3018411727 @default.
- W4296793944 hasConcept C3020132585 @default.
- W4296793944 hasConcept C41008148 @default.
- W4296793944 hasConcept C534262118 @default.
- W4296793944 hasConcept C71924100 @default.
- W4296793944 hasConcept C81363708 @default.
- W4296793944 hasConceptScore W4296793944C108583219 @default.
- W4296793944 hasConceptScore W4296793944C126838900 @default.
- W4296793944 hasConceptScore W4296793944C136764020 @default.
- W4296793944 hasConceptScore W4296793944C141071460 @default.
- W4296793944 hasConceptScore W4296793944C154945302 @default.
- W4296793944 hasConceptScore W4296793944C2779182362 @default.
- W4296793944 hasConceptScore W4296793944C3018411727 @default.
- W4296793944 hasConceptScore W4296793944C3020132585 @default.
- W4296793944 hasConceptScore W4296793944C41008148 @default.
- W4296793944 hasConceptScore W4296793944C534262118 @default.
- W4296793944 hasConceptScore W4296793944C71924100 @default.
- W4296793944 hasConceptScore W4296793944C81363708 @default.
- W4296793944 hasIssue "1" @default.
- W4296793944 hasLocation W42967939441 @default.
- W4296793944 hasLocation W42967939442 @default.
- W4296793944 hasLocation W42967939443 @default.
- W4296793944 hasOpenAccess W4296793944 @default.
- W4296793944 hasPrimaryLocation W42967939441 @default.
- W4296793944 hasRelatedWork W2068929335 @default.
- W4296793944 hasRelatedWork W2105827888 @default.
- W4296793944 hasRelatedWork W2943842647 @default.
- W4296793944 hasRelatedWork W3029198973 @default.
- W4296793944 hasRelatedWork W3080395702 @default.
- W4296793944 hasRelatedWork W3133861977 @default.
- W4296793944 hasRelatedWork W3167935049 @default.
- W4296793944 hasRelatedWork W3193565141 @default.
- W4296793944 hasRelatedWork W4226493464 @default.
- W4296793944 hasRelatedWork W4312417841 @default.
- W4296793944 hasVolume "22" @default.
- W4296793944 isParatext "false" @default.