Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296793959> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4296793959 endingPage "e0275030" @default.
- W4296793959 startingPage "e0275030" @default.
- W4296793959 abstract "Modeling and prediction of traffic systems is a challenging task due to the complex interactions within the system. Identification of significant regressors and using them to improve travel time predictions is a concept of interest. In previous studies, such regressors were identified offline and were static in nature. In this study, an iterative joint clustering and prediction approach is proposed to accurately predict spatiotemporal patterns in travel time. The clustering module is tied to the prediction module, and a prediction model is trained on each cluster. The combined clustering and prediction are then iterated until a chosen metric is optimized. This orients clusters of data towards prediction while enabling model development on subsets of travel time data with similar prediction complexity. The clusters created using the joint clustering and prediction approach confirmed to the real-world traffic scenario, forming clusters of high travel time at busy intersections and bus stops across the study stretch and forming clusters of low travel time in the sub-urban areas of the city. Further, a comparison of the developed framework with base methods demonstrated a decrease in prediction errors by at least 22.83%. This indicates that creating clusters of data that are sensitive to the quality of predictions using the joint clustering and prediction framework improves the accuracy of travel time predictions. The study also proposes criteria for choosing the best predictions when cluster-based predictions are used." @default.
- W4296793959 created "2022-09-24" @default.
- W4296793959 creator A5025231166 @default.
- W4296793959 creator A5051577314 @default.
- W4296793959 creator A5064793183 @default.
- W4296793959 date "2022-09-23" @default.
- W4296793959 modified "2023-09-26" @default.
- W4296793959 title "Joint clustering and prediction approach for travel time prediction" @default.
- W4296793959 cites W1513214281 @default.
- W4296793959 cites W2133098435 @default.
- W4296793959 cites W2183342362 @default.
- W4296793959 cites W2342362579 @default.
- W4296793959 cites W2545793358 @default.
- W4296793959 cites W2888974012 @default.
- W4296793959 cites W2889831443 @default.
- W4296793959 cites W2891280833 @default.
- W4296793959 cites W3010004116 @default.
- W4296793959 cites W3082485094 @default.
- W4296793959 cites W3186812437 @default.
- W4296793959 cites W4205614512 @default.
- W4296793959 cites W4224112146 @default.
- W4296793959 doi "https://doi.org/10.1371/journal.pone.0275030" @default.
- W4296793959 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36149882" @default.
- W4296793959 hasPublicationYear "2022" @default.
- W4296793959 type Work @default.
- W4296793959 citedByCount "1" @default.
- W4296793959 countsByYear W42967939592023 @default.
- W4296793959 crossrefType "journal-article" @default.
- W4296793959 hasAuthorship W4296793959A5025231166 @default.
- W4296793959 hasAuthorship W4296793959A5051577314 @default.
- W4296793959 hasAuthorship W4296793959A5064793183 @default.
- W4296793959 hasBestOaLocation W42967939591 @default.
- W4296793959 hasConcept C119857082 @default.
- W4296793959 hasConcept C124101348 @default.
- W4296793959 hasConcept C127413603 @default.
- W4296793959 hasConcept C154945302 @default.
- W4296793959 hasConcept C164866538 @default.
- W4296793959 hasConcept C170154142 @default.
- W4296793959 hasConcept C176217482 @default.
- W4296793959 hasConcept C18555067 @default.
- W4296793959 hasConcept C199360897 @default.
- W4296793959 hasConcept C21547014 @default.
- W4296793959 hasConcept C41008148 @default.
- W4296793959 hasConcept C45804977 @default.
- W4296793959 hasConcept C73555534 @default.
- W4296793959 hasConceptScore W4296793959C119857082 @default.
- W4296793959 hasConceptScore W4296793959C124101348 @default.
- W4296793959 hasConceptScore W4296793959C127413603 @default.
- W4296793959 hasConceptScore W4296793959C154945302 @default.
- W4296793959 hasConceptScore W4296793959C164866538 @default.
- W4296793959 hasConceptScore W4296793959C170154142 @default.
- W4296793959 hasConceptScore W4296793959C176217482 @default.
- W4296793959 hasConceptScore W4296793959C18555067 @default.
- W4296793959 hasConceptScore W4296793959C199360897 @default.
- W4296793959 hasConceptScore W4296793959C21547014 @default.
- W4296793959 hasConceptScore W4296793959C41008148 @default.
- W4296793959 hasConceptScore W4296793959C45804977 @default.
- W4296793959 hasConceptScore W4296793959C73555534 @default.
- W4296793959 hasFunder F4320322724 @default.
- W4296793959 hasIssue "9" @default.
- W4296793959 hasLocation W42967939591 @default.
- W4296793959 hasLocation W42967939592 @default.
- W4296793959 hasLocation W42967939593 @default.
- W4296793959 hasOpenAccess W4296793959 @default.
- W4296793959 hasPrimaryLocation W42967939591 @default.
- W4296793959 hasRelatedWork W2030530201 @default.
- W4296793959 hasRelatedWork W2380798983 @default.
- W4296793959 hasRelatedWork W2888523397 @default.
- W4296793959 hasRelatedWork W2961085424 @default.
- W4296793959 hasRelatedWork W3160244858 @default.
- W4296793959 hasRelatedWork W4285260836 @default.
- W4296793959 hasRelatedWork W4286629047 @default.
- W4296793959 hasRelatedWork W4306321456 @default.
- W4296793959 hasRelatedWork W4306674287 @default.
- W4296793959 hasRelatedWork W4224009465 @default.
- W4296793959 hasVolume "17" @default.
- W4296793959 isParatext "false" @default.
- W4296793959 isRetracted "false" @default.
- W4296793959 workType "article" @default.