Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296793963> ?p ?o ?g. }
Showing items 1 to 43 of
43
with 100 items per page.
- W4296793963 endingPage "11421" @default.
- W4296793963 startingPage "11409" @default.
- W4296793963 abstract "Age, sex, and body mass index (BMI) were associated with obstructive sleep apnea (OSA). Although various methods have been used in OSA prediction, this study aimed to develop predictions using simple and general predictors incorporating machine learning algorithms. This single-center, retrospective observational study assessed the diagnostic relevance of age, sex, and BMI for OSA in a cohort of 9, 422 patients who had undergone polysomnography (PSG) between 2015 and 2020. The participants were randomly divided into training, testing, and independent validation groups. Multivariable logistic regression (LR) and artificial neural network (ANN) algorithms used age, sex, and BMI as predictors to develop risk-predicting models for moderate-and-severe OSA. The training-testing dataset was used to assess the model generalizability through five-fold cross-validation. We calculated the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the independent validation set to assess the performance of the model. The results showed that age, sex, and BMI were significantly associated with OSA. The validation AUCs of the generated LR and ANN models were 0.806 and 0.807, respectively. The independent validation set's accuracy, sensitivity, specificity, PPV, and NPV were 76.3%, 87.5%, 57.0%, 77.7%, and 72.7% for the LR model, and 76.4%, 87.7%, 56.9%, 77.7%, and 73.0% respectively, for the ANN model. The LR- and ANN-boosted models with the three simple parameters effectively predicted OSA in patients referred for PSG examination and improved insight into risk stratification for OSA diagnosis." @default.
- W4296793963 created "2022-09-24" @default.
- W4296793963 creator A5022362527 @default.
- W4296793963 creator A5023980741 @default.
- W4296793963 creator A5039006455 @default.
- W4296793963 creator A5045308728 @default.
- W4296793963 creator A5059050006 @default.
- W4296793963 date "2022-08-10" @default.
- W4296793963 modified "2023-09-27" @default.
- W4296793963 title "Logistic regression and artificial neural network-based simple predicting models for obstructive sleep apnea by age, sex, and body mass index." @default.
- W4296793963 doi "https://doi.org/10.3934/mbe.2022532" @default.
- W4296793963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36124597" @default.
- W4296793963 hasPublicationYear "2022" @default.
- W4296793963 type Work @default.
- W4296793963 citedByCount "7" @default.
- W4296793963 countsByYear W42967939632022 @default.
- W4296793963 countsByYear W42967939632023 @default.
- W4296793963 crossrefType "journal-article" @default.
- W4296793963 hasAuthorship W4296793963A5022362527 @default.
- W4296793963 hasAuthorship W4296793963A5023980741 @default.
- W4296793963 hasAuthorship W4296793963A5039006455 @default.
- W4296793963 hasAuthorship W4296793963A5045308728 @default.
- W4296793963 hasAuthorship W4296793963A5059050006 @default.
- W4296793963 hasIssue "11" @default.
- W4296793963 hasLocation W42967939631 @default.
- W4296793963 hasOpenAccess W4296793963 @default.
- W4296793963 hasPrimaryLocation W42967939631 @default.
- W4296793963 hasRelatedWork W1653487 @default.
- W4296793963 hasRelatedWork W2366241946 @default.
- W4296793963 hasRelatedWork W2385652705 @default.
- W4296793963 hasRelatedWork W2605237359 @default.
- W4296793963 hasRelatedWork W2621616560 @default.
- W4296793963 hasRelatedWork W3114921937 @default.
- W4296793963 hasRelatedWork W3200069850 @default.
- W4296793963 hasRelatedWork W4226164775 @default.
- W4296793963 hasRelatedWork W4296793963 @default.
- W4296793963 hasRelatedWork W2598067411 @default.
- W4296793963 hasVolume "19" @default.
- W4296793963 isParatext "false" @default.
- W4296793963 isRetracted "false" @default.
- W4296793963 workType "article" @default.