Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296799652> ?p ?o ?g. }
- W4296799652 endingPage "11490" @default.
- W4296799652 startingPage "11453" @default.
- W4296799652 abstract "Preventive identification of mechanical parts failures has always played a crucial role in machine maintenance. Over time, as the processing cycles are repeated, the machinery in the production system is subject to wear with a consequent loss of technical efficiency compared to optimal conditions. These conditions can, in some cases, lead to the breakage of the elements with consequent stoppage of the production process pending the replacement of the element. This situation entails a large loss of turnover on the part of the company. For this reason, it is crucial to be able to predict failures in advance to try to replace the element before its wear can cause a reduction in machine performance. Several systems have recently been developed for the preventive faults detection that use a combination of low-cost sensors and algorithms based on machine learning. In this work the different methodologies for the identification of the most common mechanical failures are examined and the most widely applied algorithms based on machine learning are analyzed: Support Vector Machine (SVM) solutions, Artificial Neural Network (ANN) algorithms, Convolutional Neural Network (CNN) model, Recurrent Neural Network (RNN) applications, and Deep Generative Systems. These topics have been described in detail and the works most appreciated by the scientific community have been reviewed to highlight the strengths in identifying faults and to outline the directions for future challenges." @default.
- W4296799652 created "2022-09-24" @default.
- W4296799652 creator A5088167386 @default.
- W4296799652 date "2022-01-01" @default.
- W4296799652 modified "2023-10-06" @default.
- W4296799652 title "Machine fault detection methods based on machine learning algorithms: A review" @default.
- W4296799652 cites W1552111246 @default.
- W4296799652 cites W1597576211 @default.
- W4296799652 cites W1680797894 @default.
- W4296799652 cites W1786686177 @default.
- W4296799652 cites W179875071 @default.
- W4296799652 cites W1901616594 @default.
- W4296799652 cites W1937731213 @default.
- W4296799652 cites W1964107122 @default.
- W4296799652 cites W1964940342 @default.
- W4296799652 cites W1974716120 @default.
- W4296799652 cites W1986052273 @default.
- W4296799652 cites W1991023460 @default.
- W4296799652 cites W1992447950 @default.
- W4296799652 cites W1995956878 @default.
- W4296799652 cites W1999965501 @default.
- W4296799652 cites W2001979953 @default.
- W4296799652 cites W2003205626 @default.
- W4296799652 cites W2005934359 @default.
- W4296799652 cites W2016864600 @default.
- W4296799652 cites W2017978747 @default.
- W4296799652 cites W2021353881 @default.
- W4296799652 cites W2024905512 @default.
- W4296799652 cites W2025269911 @default.
- W4296799652 cites W2026548538 @default.
- W4296799652 cites W2028166238 @default.
- W4296799652 cites W2028193856 @default.
- W4296799652 cites W2037325790 @default.
- W4296799652 cites W2040589990 @default.
- W4296799652 cites W2041406732 @default.
- W4296799652 cites W2043020486 @default.
- W4296799652 cites W2061276788 @default.
- W4296799652 cites W2069962935 @default.
- W4296799652 cites W2072462334 @default.
- W4296799652 cites W2075099466 @default.
- W4296799652 cites W2086913204 @default.
- W4296799652 cites W2090055229 @default.
- W4296799652 cites W2093258526 @default.
- W4296799652 cites W2107074288 @default.
- W4296799652 cites W2120113688 @default.
- W4296799652 cites W2126584714 @default.
- W4296799652 cites W2136944099 @default.
- W4296799652 cites W2140336071 @default.
- W4296799652 cites W2155876893 @default.
- W4296799652 cites W2164700406 @default.
- W4296799652 cites W2188854810 @default.
- W4296799652 cites W2205897359 @default.
- W4296799652 cites W2240887954 @default.
- W4296799652 cites W2280977705 @default.
- W4296799652 cites W2293634267 @default.
- W4296799652 cites W2335999708 @default.
- W4296799652 cites W2341973567 @default.
- W4296799652 cites W2343999517 @default.
- W4296799652 cites W2364839527 @default.
- W4296799652 cites W2404692435 @default.
- W4296799652 cites W2461729787 @default.
- W4296799652 cites W2485614840 @default.
- W4296799652 cites W2528578439 @default.
- W4296799652 cites W2533328922 @default.
- W4296799652 cites W2538405680 @default.
- W4296799652 cites W2539863713 @default.
- W4296799652 cites W2558869916 @default.
- W4296799652 cites W2584994008 @default.
- W4296799652 cites W2591055632 @default.
- W4296799652 cites W2592232824 @default.
- W4296799652 cites W2610288532 @default.
- W4296799652 cites W2735326783 @default.
- W4296799652 cites W2744790985 @default.
- W4296799652 cites W2768753204 @default.
- W4296799652 cites W2792098970 @default.
- W4296799652 cites W2792191775 @default.
- W4296799652 cites W2793888044 @default.
- W4296799652 cites W2796942168 @default.
- W4296799652 cites W2799581077 @default.
- W4296799652 cites W2799816940 @default.
- W4296799652 cites W2803978172 @default.
- W4296799652 cites W2805611890 @default.
- W4296799652 cites W2883843133 @default.
- W4296799652 cites W2886794804 @default.
- W4296799652 cites W2890235427 @default.
- W4296799652 cites W2896365146 @default.
- W4296799652 cites W2896827919 @default.
- W4296799652 cites W2897680073 @default.
- W4296799652 cites W2897745724 @default.
- W4296799652 cites W2897895022 @default.
- W4296799652 cites W2898429578 @default.
- W4296799652 cites W2908181013 @default.
- W4296799652 cites W2910881901 @default.
- W4296799652 cites W2911935588 @default.
- W4296799652 cites W2912974502 @default.
- W4296799652 cites W2913381754 @default.
- W4296799652 cites W2916182456 @default.
- W4296799652 cites W2923537029 @default.