Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296809114> ?p ?o ?g. }
- W4296809114 endingPage "6543" @default.
- W4296809114 startingPage "6530" @default.
- W4296809114 abstract "We performed theoretical studies of CO2 capture in atmospheric conditions by the zeolitic imidazolate framework-8 (ZIF-8) via classical Monte Carlo (MC) simulations with Metropolis sampling and classical molecular dynamics (MD) simulations in the NVT and NPT ensembles and different thermodynamic conditions. The ZIF-8 framework was described by varying unit cell dimensions in the presence of pure gases of CO2, N2, O2, Ar, and H2O steam as well as binary mixtures of CO2:N2 and CO2:H2O in s 1:1 concentration. Different chemical compositions of the framework surface was considered to provide an accurate treatment of charge and charge distribution in the nanoparticle. Hence, surface groups were represented as unsaturated zinc atom (Zn+2), 2-methylimidazole (mImH), and deprotonated 2-methylimidazole (mIm-). Force field reparameterization of the surface sites was required to reproduce the interactions of the gas molecules with the ZIF-8 surface consistent with quantum mechanics (QM) calculations and Born-Oppenheimer molecular dynamics (BOMD). It was observed that ZIF-8 selectively captures CO2 due to the negligible concentrations of N2, O2, Ar, and H2O. These molecules spontaneously migrate to the inner pores of the framework. At the surface, there is a competitive interaction between H2O, CO2, and N2, for the positively charged ZIF-8 nanoparticle with a large binding energy advantage for water molecules (on average -62, -15, and -8 kcal/mol respectively). For the neutral ZIF-8 nanoparticle, the water molecules dominate the interactions due to the occurrence of hydrogen bond with the imidazolate groups at the surface. Simulations of binary mixtures of CO2/water steam and CO2/N2 were performed to investigate binding competition between these molecules for the framework positively charged and neutral surfaces. It was found that water molecules drastically block the interaction between CO2 molecules and the framework surface, decreasing CO2 capture in the central pore, and CO2 molecules fully block the interaction between N2 molecules and the framework. These findings show that CO2 capture by ZIF-8 is possible in atmospheric environments only upon dehydration of the atmospheric gas. It further shows that ZIF-8 capture of CO2 from the atmospheric environment is dependent on thermodynamic conditions and can be increased by decreasing temperature and/or increasing pressure." @default.
- W4296809114 created "2022-09-24" @default.
- W4296809114 creator A5013720689 @default.
- W4296809114 creator A5049694823 @default.
- W4296809114 creator A5086065566 @default.
- W4296809114 date "2022-09-23" @default.
- W4296809114 modified "2023-10-14" @default.
- W4296809114 title "The Effect of Surface Composition on the Selective Capture of Atmospheric CO<sub>2</sub> by ZIF Nanoparticles: The Case of ZIF-8" @default.
- W4296809114 cites W1031578623 @default.
- W4296809114 cites W1540226027 @default.
- W4296809114 cites W1965803603 @default.
- W4296809114 cites W1969497848 @default.
- W4296809114 cites W1970144466 @default.
- W4296809114 cites W1970252296 @default.
- W4296809114 cites W1981368803 @default.
- W4296809114 cites W1986022082 @default.
- W4296809114 cites W1988625937 @default.
- W4296809114 cites W1989060947 @default.
- W4296809114 cites W2001037711 @default.
- W4296809114 cites W2003370141 @default.
- W4296809114 cites W2007060296 @default.
- W4296809114 cites W2012219400 @default.
- W4296809114 cites W2013932249 @default.
- W4296809114 cites W2014166972 @default.
- W4296809114 cites W2020039565 @default.
- W4296809114 cites W2023399163 @default.
- W4296809114 cites W2027581042 @default.
- W4296809114 cites W2028182782 @default.
- W4296809114 cites W2030055363 @default.
- W4296809114 cites W2030971064 @default.
- W4296809114 cites W2038440906 @default.
- W4296809114 cites W2039141427 @default.
- W4296809114 cites W2045536087 @default.
- W4296809114 cites W2046138316 @default.
- W4296809114 cites W2047807446 @default.
- W4296809114 cites W2049475242 @default.
- W4296809114 cites W2051958965 @default.
- W4296809114 cites W2053557914 @default.
- W4296809114 cites W2057477511 @default.
- W4296809114 cites W2068410696 @default.
- W4296809114 cites W2071406519 @default.
- W4296809114 cites W2079877060 @default.
- W4296809114 cites W2080316712 @default.
- W4296809114 cites W2088052198 @default.
- W4296809114 cites W2090358874 @default.
- W4296809114 cites W2090461840 @default.
- W4296809114 cites W2116859130 @default.
- W4296809114 cites W2128572087 @default.
- W4296809114 cites W2139482086 @default.
- W4296809114 cites W2143981217 @default.
- W4296809114 cites W2148941593 @default.
- W4296809114 cites W2151334055 @default.
- W4296809114 cites W2156744538 @default.
- W4296809114 cites W2163535530 @default.
- W4296809114 cites W2249132125 @default.
- W4296809114 cites W2257231359 @default.
- W4296809114 cites W2294418025 @default.
- W4296809114 cites W2313411230 @default.
- W4296809114 cites W2316918399 @default.
- W4296809114 cites W2317004216 @default.
- W4296809114 cites W2317965498 @default.
- W4296809114 cites W2322473624 @default.
- W4296809114 cites W2324486822 @default.
- W4296809114 cites W2325528214 @default.
- W4296809114 cites W2328546001 @default.
- W4296809114 cites W2417526574 @default.
- W4296809114 cites W2420473182 @default.
- W4296809114 cites W2486273941 @default.
- W4296809114 cites W2517213317 @default.
- W4296809114 cites W2528180260 @default.
- W4296809114 cites W2548563831 @default.
- W4296809114 cites W2600840836 @default.
- W4296809114 cites W2766413481 @default.
- W4296809114 cites W2885063588 @default.
- W4296809114 cites W2900215831 @default.
- W4296809114 cites W2906140630 @default.
- W4296809114 cites W2991188715 @default.
- W4296809114 cites W3032745129 @default.
- W4296809114 cites W3098373786 @default.
- W4296809114 cites W3196254488 @default.
- W4296809114 cites W4213228987 @default.
- W4296809114 cites W4220731363 @default.
- W4296809114 cites W4240035468 @default.
- W4296809114 cites W4251723943 @default.
- W4296809114 doi "https://doi.org/10.1021/acs.jcim.2c00579" @default.
- W4296809114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36149374" @default.
- W4296809114 hasPublicationYear "2022" @default.
- W4296809114 type Work @default.
- W4296809114 citedByCount "4" @default.
- W4296809114 countsByYear W42968091142022 @default.
- W4296809114 countsByYear W42968091142023 @default.
- W4296809114 crossrefType "journal-article" @default.
- W4296809114 hasAuthorship W4296809114A5013720689 @default.
- W4296809114 hasAuthorship W4296809114A5049694823 @default.
- W4296809114 hasAuthorship W4296809114A5086065566 @default.
- W4296809114 hasBestOaLocation W42968091141 @default.
- W4296809114 hasConcept C147597530 @default.
- W4296809114 hasConcept C147789679 @default.