Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296809356> ?p ?o ?g. }
- W4296809356 endingPage "250" @default.
- W4296809356 startingPage "250" @default.
- W4296809356 abstract "A dual autoencoder employing separable convolutional layers for image denoising and deblurring is represented. Combining two autoencoders is presented to gain higher accuracy and simultaneously reduce the complexity of neural network parameters by using separable convolutional layers. In the proposed structure of the dual autoencoder, the first autoencoder aims to denoise the image, while the second one aims to enhance the quality of the denoised image. The research includes Gaussian noise (Gaussian blur), Poisson noise, speckle noise, and random impulse noise. The advantages of the proposed neural network are the number reduction in the trainable parameters and the increase in the similarity between the denoised or deblurred image and the original one. The similarity is increased by decreasing the main square error and increasing the structural similarity index. The advantages of a dual autoencoder network with separable convolutional layers are demonstrated by a comparison of the proposed network with a convolutional autoencoder and dual convolutional autoencoder." @default.
- W4296809356 created "2022-09-24" @default.
- W4296809356 creator A5000979717 @default.
- W4296809356 creator A5037898481 @default.
- W4296809356 date "2022-09-13" @default.
- W4296809356 modified "2023-09-26" @default.
- W4296809356 title "Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images" @default.
- W4296809356 cites W2051443668 @default.
- W4296809356 cites W2420132155 @default.
- W4296809356 cites W2600389125 @default.
- W4296809356 cites W2732360364 @default.
- W4296809356 cites W2751457520 @default.
- W4296809356 cites W2757248724 @default.
- W4296809356 cites W2784122085 @default.
- W4296809356 cites W2785529134 @default.
- W4296809356 cites W2789481473 @default.
- W4296809356 cites W2793642918 @default.
- W4296809356 cites W2797182028 @default.
- W4296809356 cites W2799450452 @default.
- W4296809356 cites W2809980976 @default.
- W4296809356 cites W2886849145 @default.
- W4296809356 cites W2887120790 @default.
- W4296809356 cites W2889050885 @default.
- W4296809356 cites W2889298180 @default.
- W4296809356 cites W2893196123 @default.
- W4296809356 cites W2894799553 @default.
- W4296809356 cites W2896663560 @default.
- W4296809356 cites W2897392422 @default.
- W4296809356 cites W2899280016 @default.
- W4296809356 cites W2902126601 @default.
- W4296809356 cites W2908272209 @default.
- W4296809356 cites W2910639395 @default.
- W4296809356 cites W2913496322 @default.
- W4296809356 cites W2921302524 @default.
- W4296809356 cites W2921871306 @default.
- W4296809356 cites W2943254484 @default.
- W4296809356 cites W2950765052 @default.
- W4296809356 cites W2963085671 @default.
- W4296809356 cites W2967098998 @default.
- W4296809356 cites W2970280802 @default.
- W4296809356 cites W2971218913 @default.
- W4296809356 cites W2982287689 @default.
- W4296809356 cites W2986829670 @default.
- W4296809356 cites W2998480740 @default.
- W4296809356 cites W3000472254 @default.
- W4296809356 cites W3000865062 @default.
- W4296809356 cites W3025422478 @default.
- W4296809356 cites W3032940843 @default.
- W4296809356 cites W3041500444 @default.
- W4296809356 cites W3047011367 @default.
- W4296809356 cites W3047957451 @default.
- W4296809356 cites W3080961370 @default.
- W4296809356 cites W3098284381 @default.
- W4296809356 cites W3103921058 @default.
- W4296809356 cites W3108279280 @default.
- W4296809356 cites W3120939917 @default.
- W4296809356 cites W3141333499 @default.
- W4296809356 cites W3154558964 @default.
- W4296809356 cites W3158981840 @default.
- W4296809356 cites W3164852505 @default.
- W4296809356 cites W3165578810 @default.
- W4296809356 cites W3169893408 @default.
- W4296809356 cites W3170697543 @default.
- W4296809356 cites W3172546465 @default.
- W4296809356 cites W3173285755 @default.
- W4296809356 cites W3174829522 @default.
- W4296809356 cites W3206355132 @default.
- W4296809356 cites W3207918547 @default.
- W4296809356 cites W3208216270 @default.
- W4296809356 cites W3209199397 @default.
- W4296809356 cites W3213523319 @default.
- W4296809356 cites W4210302585 @default.
- W4296809356 cites W4230734561 @default.
- W4296809356 cites W4283118919 @default.
- W4296809356 cites W2766148092 @default.
- W4296809356 cites W2810034908 @default.
- W4296809356 cites W2995097131 @default.
- W4296809356 doi "https://doi.org/10.3390/jimaging8090250" @default.
- W4296809356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36135415" @default.
- W4296809356 hasPublicationYear "2022" @default.
- W4296809356 type Work @default.
- W4296809356 citedByCount "1" @default.
- W4296809356 countsByYear W42968093562023 @default.
- W4296809356 crossrefType "journal-article" @default.
- W4296809356 hasAuthorship W4296809356A5000979717 @default.
- W4296809356 hasAuthorship W4296809356A5037898481 @default.
- W4296809356 hasBestOaLocation W42968093561 @default.
- W4296809356 hasConcept C101738243 @default.
- W4296809356 hasConcept C106430172 @default.
- W4296809356 hasConcept C108583219 @default.
- W4296809356 hasConcept C115961682 @default.
- W4296809356 hasConcept C153180895 @default.
- W4296809356 hasConcept C154945302 @default.
- W4296809356 hasConcept C163294075 @default.
- W4296809356 hasConcept C2777693668 @default.
- W4296809356 hasConcept C31972630 @default.
- W4296809356 hasConcept C41008148 @default.
- W4296809356 hasConcept C81363708 @default.