Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296810137> ?p ?o ?g. }
- W4296810137 endingPage "e0274171" @default.
- W4296810137 startingPage "e0274171" @default.
- W4296810137 abstract "The clinical course of COVID-19 is highly variable. It is therefore essential to predict as early and accurately as possible the severity level of the disease in a COVID-19 patient who is admitted to the hospital. This means identifying the contributing factors of mortality and developing an easy-to-use score that could enable a fast assessment of the mortality risk using only information recorded at the hospitalization. A large database of adult patients with a confirmed diagnosis of COVID-19 (n = 15,628; with 2,846 deceased) admitted to Spanish hospitals between December 2019 and July 2020 was analyzed. By means of multiple machine learning algorithms, we developed models that could accurately predict their mortality. We used the information about classifiers' performance metrics and about importance and coherence among the predictors to define a mortality score that can be easily calculated using a minimal number of mortality predictors and yielded accurate estimates of the patient severity status. The optimal predictive model encompassed five predictors (age, oxygen saturation, platelets, lactate dehydrogenase, and creatinine) and yielded a satisfactory classification of survived and deceased patients (area under the curve: 0.8454 with validation set). These five predictors were additionally used to define a mortality score for COVID-19 patients at their hospitalization. This score is not only easy to calculate but also to interpret since it ranges from zero to eight, along with a linear increase in the mortality risk from 0% to 80%. A simple risk score based on five commonly available clinical variables of adult COVID-19 patients admitted to hospital is able to accurately discriminate their mortality probability, and its interpretation is straightforward and useful." @default.
- W4296810137 created "2022-09-24" @default.
- W4296810137 creator A5022598051 @default.
- W4296810137 creator A5023297014 @default.
- W4296810137 creator A5028483683 @default.
- W4296810137 creator A5038963177 @default.
- W4296810137 creator A5042730016 @default.
- W4296810137 creator A5047882021 @default.
- W4296810137 creator A5050419581 @default.
- W4296810137 creator A5072583434 @default.
- W4296810137 creator A5079517355 @default.
- W4296810137 creator A5090919422 @default.
- W4296810137 creator A5091413224 @default.
- W4296810137 date "2022-09-22" @default.
- W4296810137 modified "2023-09-28" @default.
- W4296810137 title "Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients" @default.
- W4296810137 cites W2164583936 @default.
- W4296810137 cites W2634533365 @default.
- W4296810137 cites W2911964244 @default.
- W4296810137 cites W2944434778 @default.
- W4296810137 cites W2996480032 @default.
- W4296810137 cites W3014524604 @default.
- W4296810137 cites W3015671971 @default.
- W4296810137 cites W3016127406 @default.
- W4296810137 cites W3024853795 @default.
- W4296810137 cites W3034310659 @default.
- W4296810137 cites W3042584574 @default.
- W4296810137 cites W3046387265 @default.
- W4296810137 cites W3046629770 @default.
- W4296810137 cites W3083924429 @default.
- W4296810137 cites W3086786425 @default.
- W4296810137 cites W3087049386 @default.
- W4296810137 cites W3087718362 @default.
- W4296810137 cites W3089564851 @default.
- W4296810137 cites W3092436046 @default.
- W4296810137 cites W3119080408 @default.
- W4296810137 cites W3128503122 @default.
- W4296810137 cites W3130097687 @default.
- W4296810137 cites W3137754018 @default.
- W4296810137 cites W3151561918 @default.
- W4296810137 cites W3167868706 @default.
- W4296810137 cites W3186255276 @default.
- W4296810137 cites W4205333908 @default.
- W4296810137 cites W4243395278 @default.
- W4296810137 doi "https://doi.org/10.1371/journal.pone.0274171" @default.
- W4296810137 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36137106" @default.
- W4296810137 hasPublicationYear "2022" @default.
- W4296810137 type Work @default.
- W4296810137 citedByCount "3" @default.
- W4296810137 countsByYear W42968101372023 @default.
- W4296810137 crossrefType "journal-article" @default.
- W4296810137 hasAuthorship W4296810137A5022598051 @default.
- W4296810137 hasAuthorship W4296810137A5023297014 @default.
- W4296810137 hasAuthorship W4296810137A5028483683 @default.
- W4296810137 hasAuthorship W4296810137A5038963177 @default.
- W4296810137 hasAuthorship W4296810137A5042730016 @default.
- W4296810137 hasAuthorship W4296810137A5047882021 @default.
- W4296810137 hasAuthorship W4296810137A5050419581 @default.
- W4296810137 hasAuthorship W4296810137A5072583434 @default.
- W4296810137 hasAuthorship W4296810137A5079517355 @default.
- W4296810137 hasAuthorship W4296810137A5090919422 @default.
- W4296810137 hasAuthorship W4296810137A5091413224 @default.
- W4296810137 hasBestOaLocation W42968101371 @default.
- W4296810137 hasConcept C11783203 @default.
- W4296810137 hasConcept C119857082 @default.
- W4296810137 hasConcept C126322002 @default.
- W4296810137 hasConcept C154945302 @default.
- W4296810137 hasConcept C179755657 @default.
- W4296810137 hasConcept C194828623 @default.
- W4296810137 hasConcept C2777984932 @default.
- W4296810137 hasConcept C2779134260 @default.
- W4296810137 hasConcept C30036603 @default.
- W4296810137 hasConcept C3008058167 @default.
- W4296810137 hasConcept C41008148 @default.
- W4296810137 hasConcept C45804977 @default.
- W4296810137 hasConcept C524204448 @default.
- W4296810137 hasConcept C71924100 @default.
- W4296810137 hasConceptScore W4296810137C11783203 @default.
- W4296810137 hasConceptScore W4296810137C119857082 @default.
- W4296810137 hasConceptScore W4296810137C126322002 @default.
- W4296810137 hasConceptScore W4296810137C154945302 @default.
- W4296810137 hasConceptScore W4296810137C179755657 @default.
- W4296810137 hasConceptScore W4296810137C194828623 @default.
- W4296810137 hasConceptScore W4296810137C2777984932 @default.
- W4296810137 hasConceptScore W4296810137C2779134260 @default.
- W4296810137 hasConceptScore W4296810137C30036603 @default.
- W4296810137 hasConceptScore W4296810137C3008058167 @default.
- W4296810137 hasConceptScore W4296810137C41008148 @default.
- W4296810137 hasConceptScore W4296810137C45804977 @default.
- W4296810137 hasConceptScore W4296810137C524204448 @default.
- W4296810137 hasConceptScore W4296810137C71924100 @default.
- W4296810137 hasFunder F4320321864 @default.
- W4296810137 hasFunder F4320322930 @default.
- W4296810137 hasFunder F4320338080 @default.
- W4296810137 hasIssue "9" @default.
- W4296810137 hasLocation W42968101371 @default.
- W4296810137 hasLocation W42968101372 @default.
- W4296810137 hasLocation W42968101373 @default.