Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296829636> ?p ?o ?g. }
- W4296829636 endingPage "4736" @default.
- W4296829636 startingPage "4736" @default.
- W4296829636 abstract "One of the major barriers to hindering the sustainable development of the terrestrial environment is the desertification process, and revegetation is one of the most significant duties in anti-desertification. Desertification deteriorates land ecosystems through species decline, and remote sensing is becoming the most effective way to monitor desertification. Mu Us Sandy Land is the fifth largest desert and the representative area under manmade vegetation restorations in China. Therefore, it is essential to understand the spatiotemporal characteristics of artificial desert transformation for seeking the optimal revegetation location for future restoration planning. However, there are no previous studies focusing on exploring regular patterns between the spatial distribution of vegetation restoration and human-related geographical features. In this study, we use Landsat satellite data from 1986 to 2020 to achieve annual monitoring of vegetation change by a threshold segmentation method, and then use spatiotemporal analysis with Open Street Map (OSM) data to explore the spatiotemporal distribution pattern between vegetation occurrence and human-related features. We construct an artificial vegetation restoration suitability index (AVRSI) by considering human-related features and topographical factors, and we assess artificial suitability for vegetation restoration by mapping methods based on that index and the vegetation distribution pattern. The AVRSI can be commonly used for evaluating restoration suitability in Sandy areas and it is tested acceptable in Mu Us Sandy Land. Our results show during this period, the segmentation threshold and vegetation area of Mu Us Sandy Land increased at rates of 0.005/year and 264.11 km2/year, respectively. Typically, we found the artificial restoration vegetation suitability in Mu Us area spatially declines from southeast to northwest, but eventually increases in the most northwest region. This study reveals the revegetation process in Mu Us Sandy Land by figuring out its spatiotemporal vegetation change with human-related features and maps the artificial revegetation suitability." @default.
- W4296829636 created "2022-09-24" @default.
- W4296829636 creator A5006682716 @default.
- W4296829636 creator A5019320923 @default.
- W4296829636 creator A5064140321 @default.
- W4296829636 creator A5064165952 @default.
- W4296829636 creator A5075626416 @default.
- W4296829636 creator A5087966597 @default.
- W4296829636 creator A5088176505 @default.
- W4296829636 date "2022-09-22" @default.
- W4296829636 modified "2023-10-06" @default.
- W4296829636 title "Integrating Remote Sensing and Spatiotemporal Analysis to Characterize Artificial Vegetation Restoration Suitability in Desert Areas: A Case Study of Mu Us Sandy Land" @default.
- W4296829636 cites W1966041319 @default.
- W4296829636 cites W1973745582 @default.
- W4296829636 cites W1981435813 @default.
- W4296829636 cites W2010459201 @default.
- W4296829636 cites W2020434667 @default.
- W4296829636 cites W2021134274 @default.
- W4296829636 cites W2024929776 @default.
- W4296829636 cites W2027154544 @default.
- W4296829636 cites W2044417912 @default.
- W4296829636 cites W2048127259 @default.
- W4296829636 cites W2062413904 @default.
- W4296829636 cites W2081914524 @default.
- W4296829636 cites W2095328569 @default.
- W4296829636 cites W2096225341 @default.
- W4296829636 cites W2133059825 @default.
- W4296829636 cites W2136253503 @default.
- W4296829636 cites W2141086317 @default.
- W4296829636 cites W2145983227 @default.
- W4296829636 cites W2146255516 @default.
- W4296829636 cites W2160717703 @default.
- W4296829636 cites W2193879634 @default.
- W4296829636 cites W2344230644 @default.
- W4296829636 cites W2410204166 @default.
- W4296829636 cites W2494561118 @default.
- W4296829636 cites W2508222022 @default.
- W4296829636 cites W2518914424 @default.
- W4296829636 cites W2571041687 @default.
- W4296829636 cites W2606061879 @default.
- W4296829636 cites W2619820913 @default.
- W4296829636 cites W2752696298 @default.
- W4296829636 cites W2788696901 @default.
- W4296829636 cites W2807658480 @default.
- W4296829636 cites W2888639124 @default.
- W4296829636 cites W2901950222 @default.
- W4296829636 cites W2904356162 @default.
- W4296829636 cites W2906848991 @default.
- W4296829636 cites W2917005890 @default.
- W4296829636 cites W2918825222 @default.
- W4296829636 cites W2955471798 @default.
- W4296829636 cites W3014404978 @default.
- W4296829636 cites W3026323908 @default.
- W4296829636 cites W3036976951 @default.
- W4296829636 cites W3044812551 @default.
- W4296829636 cites W3088046142 @default.
- W4296829636 cites W3105817083 @default.
- W4296829636 cites W3154802290 @default.
- W4296829636 cites W3184733693 @default.
- W4296829636 cites W3186527474 @default.
- W4296829636 cites W3191141135 @default.
- W4296829636 cites W3197693479 @default.
- W4296829636 cites W3216053462 @default.
- W4296829636 cites W344203161 @default.
- W4296829636 cites W4206935588 @default.
- W4296829636 cites W4214827384 @default.
- W4296829636 cites W4229563829 @default.
- W4296829636 cites W51411238 @default.
- W4296829636 doi "https://doi.org/10.3390/rs14194736" @default.
- W4296829636 hasPublicationYear "2022" @default.
- W4296829636 type Work @default.
- W4296829636 citedByCount "4" @default.
- W4296829636 countsByYear W42968296362023 @default.
- W4296829636 crossrefType "journal-article" @default.
- W4296829636 hasAuthorship W4296829636A5006682716 @default.
- W4296829636 hasAuthorship W4296829636A5019320923 @default.
- W4296829636 hasAuthorship W4296829636A5064140321 @default.
- W4296829636 hasAuthorship W4296829636A5064165952 @default.
- W4296829636 hasAuthorship W4296829636A5075626416 @default.
- W4296829636 hasAuthorship W4296829636A5087966597 @default.
- W4296829636 hasAuthorship W4296829636A5088176505 @default.
- W4296829636 hasBestOaLocation W42968296361 @default.
- W4296829636 hasConcept C100970517 @default.
- W4296829636 hasConcept C127313418 @default.
- W4296829636 hasConcept C142724271 @default.
- W4296829636 hasConcept C166957645 @default.
- W4296829636 hasConcept C187320778 @default.
- W4296829636 hasConcept C18903297 @default.
- W4296829636 hasConcept C205649164 @default.
- W4296829636 hasConcept C2776133958 @default.
- W4296829636 hasConcept C2776278397 @default.
- W4296829636 hasConcept C33559203 @default.
- W4296829636 hasConcept C39432304 @default.
- W4296829636 hasConcept C4792198 @default.
- W4296829636 hasConcept C61661205 @default.
- W4296829636 hasConcept C62649853 @default.
- W4296829636 hasConcept C71924100 @default.
- W4296829636 hasConcept C76886044 @default.