Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296849212> ?p ?o ?g. }
- W4296849212 endingPage "107367" @default.
- W4296849212 startingPage "107367" @default.
- W4296849212 abstract "Estimation of crop yields included in the planning is an essential condition for accurate and timely agricultural planning. Remotely sensed products, such as the spectral vegetation index (VI), are widely used in estimation of crop yields. The integration of remotely sensed data into machine learning methods will have the potential to develop a real-time management system specific to the area of interest. The main aim of the study was to determine the eggplant yield in field conditions, based on VIs obtained from a handheld spectroradiometer, using five different machine learning methods (artificial neural networks (ANN), support vector machines (SVR), k nearest neighbor (kNN), random forests (RF), and Adaptive boosting (AB)), and compare the performances of the methods. The data used in the study were obtained in field experiments focusing on determining the most suitable irrigation program for eggplant production in a semi-humid climate region in northern Turkey during 2015, 2016 and 2017 growing seasons. Irrigation treatments consisted of a total of five applications, which were full water application (I1:100 %) and different deficit ration of full water application (I2:I1x 75 %, I3: I1x50%, I4:I1x25% and I5: rainfed based). Input variables used in yield estimation models were determined by correlation analysis and principal components analysis (PCA). The inputs in the models were different combinations of 10 different VIs, the number of days after planting (DAP) and water application coefficients. In addition, an alternative approach was proposed, in which PCA components were used as input for yield estimation. All machine learning models using PCA-based inputs were estimated with higher accuracy than other input combinations. The best results were obtained with the ANN model based on PCA-based inputs; therefore, this model was chosen for eggplant yield estimation (coefficient of determination (R2) = 0.973, mean absolute error (MAE) = 274.816 kg ha−1, root mean square error (RMSE) = 352.787 kg ha−1 and Nash–Sutcliffe efficiency (NSE) = 0.951). The lowest accuracy for yield estimation was recorded in RF model. The prediction accuracy of the models using a single VI as input was low. Green index (GI) and green vegetation index (GVI) had the highest impact on eggplant yield, and eggplant yield was estimated with higher accuracy with these indices, which are sensitive to chlorophyll absorption. The findings of the current study demonstrate the benefits of using remotely sensed data and PCA together in machine learning models to more reliably and accurately estimate eggplant yield at regional scale." @default.
- W4296849212 created "2022-09-24" @default.
- W4296849212 creator A5070672919 @default.
- W4296849212 creator A5077290505 @default.
- W4296849212 creator A5080530266 @default.
- W4296849212 creator A5090172482 @default.
- W4296849212 date "2022-11-01" @default.
- W4296849212 modified "2023-10-14" @default.
- W4296849212 title "Estimation of eggplant yield with machine learning methods using spectral vegetation indices" @default.
- W4296849212 cites W1968684339 @default.
- W4296849212 cites W1975442588 @default.
- W4296849212 cites W1976293179 @default.
- W4296849212 cites W1982667532 @default.
- W4296849212 cites W1985479415 @default.
- W4296849212 cites W1987415163 @default.
- W4296849212 cites W1988790447 @default.
- W4296849212 cites W2008667922 @default.
- W4296849212 cites W2024339493 @default.
- W4296849212 cites W2033904036 @default.
- W4296849212 cites W2051172013 @default.
- W4296849212 cites W2060221775 @default.
- W4296849212 cites W2079123570 @default.
- W4296849212 cites W2080642955 @default.
- W4296849212 cites W2085624281 @default.
- W4296849212 cites W2087199166 @default.
- W4296849212 cites W2094478602 @default.
- W4296849212 cites W2109976724 @default.
- W4296849212 cites W2112674101 @default.
- W4296849212 cites W2116905012 @default.
- W4296849212 cites W2122111042 @default.
- W4296849212 cites W2133272607 @default.
- W4296849212 cites W2144167994 @default.
- W4296849212 cites W2162668401 @default.
- W4296849212 cites W2185967267 @default.
- W4296849212 cites W2200121095 @default.
- W4296849212 cites W2202019762 @default.
- W4296849212 cites W2416782259 @default.
- W4296849212 cites W2534136842 @default.
- W4296849212 cites W2618400371 @default.
- W4296849212 cites W2747394407 @default.
- W4296849212 cites W2793927960 @default.
- W4296849212 cites W2805142011 @default.
- W4296849212 cites W2810045082 @default.
- W4296849212 cites W2899996856 @default.
- W4296849212 cites W2911964244 @default.
- W4296849212 cites W2921360674 @default.
- W4296849212 cites W2921467030 @default.
- W4296849212 cites W2931650435 @default.
- W4296849212 cites W2942851257 @default.
- W4296849212 cites W2950334518 @default.
- W4296849212 cites W2951138530 @default.
- W4296849212 cites W2963935416 @default.
- W4296849212 cites W2966674309 @default.
- W4296849212 cites W2982923311 @default.
- W4296849212 cites W2991306453 @default.
- W4296849212 cites W2995678734 @default.
- W4296849212 cites W3000098473 @default.
- W4296849212 cites W3016055789 @default.
- W4296849212 cites W3026920442 @default.
- W4296849212 cites W3045041747 @default.
- W4296849212 cites W3045046752 @default.
- W4296849212 cites W3079760979 @default.
- W4296849212 cites W3086446917 @default.
- W4296849212 cites W3088885014 @default.
- W4296849212 cites W3093998899 @default.
- W4296849212 cites W3095721277 @default.
- W4296849212 cites W3098019734 @default.
- W4296849212 cites W3187839548 @default.
- W4296849212 cites W4200622567 @default.
- W4296849212 cites W4221036712 @default.
- W4296849212 doi "https://doi.org/10.1016/j.compag.2022.107367" @default.
- W4296849212 hasPublicationYear "2022" @default.
- W4296849212 type Work @default.
- W4296849212 citedByCount "3" @default.
- W4296849212 countsByYear W42968492122023 @default.
- W4296849212 crossrefType "journal-article" @default.
- W4296849212 hasAuthorship W4296849212A5070672919 @default.
- W4296849212 hasAuthorship W4296849212A5077290505 @default.
- W4296849212 hasAuthorship W4296849212A5080530266 @default.
- W4296849212 hasAuthorship W4296849212A5090172482 @default.
- W4296849212 hasConcept C105795698 @default.
- W4296849212 hasConcept C108597893 @default.
- W4296849212 hasConcept C119857082 @default.
- W4296849212 hasConcept C120665830 @default.
- W4296849212 hasConcept C121332964 @default.
- W4296849212 hasConcept C12267149 @default.
- W4296849212 hasConcept C126343540 @default.
- W4296849212 hasConcept C127413603 @default.
- W4296849212 hasConcept C130066347 @default.
- W4296849212 hasConcept C154945302 @default.
- W4296849212 hasConcept C169258074 @default.
- W4296849212 hasConcept C27438332 @default.
- W4296849212 hasConcept C33923547 @default.
- W4296849212 hasConcept C41008148 @default.
- W4296849212 hasConcept C50644808 @default.
- W4296849212 hasConcept C6557445 @default.
- W4296849212 hasConcept C86803240 @default.
- W4296849212 hasConcept C88463610 @default.