Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296892994> ?p ?o ?g. }
- W4296892994 endingPage "470" @default.
- W4296892994 startingPage "460" @default.
- W4296892994 abstract "Recent efforts for increasing the success in drug discovery focus on an early, massive, and routine mechanistic and/or kinetic characterization of drug-target engagement as part of a design-make-test-analyze strategy. From an experimental perspective, many mechanistic assays can be translated into a scalable format on automation platforms and thereby enable routine characterization of hundreds or thousands of compounds. However, now the limiting factor to achieve such in-depth characterization at high-throughput becomes the quality-driven data analysis, the sheer scale of which outweighs the time available to the scientific staff of most labs. Therefore, automated analytical workflows are needed to enable such experimental scale-up. We have implemented such a fully automated workflow in Genedata Screener for time-dependent ligand-target binding analysis to characterize non-equilibrium inhibitors. The workflow automates Quality Control (QC) / data modelling and decision-making process in a staged analysis: (1) quality control of raw input data-fluorescence signal-based progress curves - featuring automated rejection of unsuitable measurements; (2) automated model selection - one-step versus two-step binding model - using statistical methods and biological validity rules; (3) result visualization in specific plots and annotated result tables, enabling the scientist to review large result sets efficiently and, at the same time, to rapidly identify and focus on interesting or unusual results; (4) an interactive user interface for immediate adjustment of automated decisions, where necessary. Applying this workflow to first-pass, high-throughput kinetic studies on kinase projects has allowed us to surmount previously rate-limiting manual analysis steps and boost productivity; and is now routinely embedded in a biopharma discovery research process." @default.
- W4296892994 created "2022-09-24" @default.
- W4296892994 creator A5006496354 @default.
- W4296892994 creator A5014244021 @default.
- W4296892994 creator A5014930819 @default.
- W4296892994 creator A5017901256 @default.
- W4296892994 creator A5035419940 @default.
- W4296892994 creator A5042439253 @default.
- W4296892994 creator A5050338248 @default.
- W4296892994 creator A5059772830 @default.
- W4296892994 creator A5066631278 @default.
- W4296892994 creator A5073785741 @default.
- W4296892994 date "2022-12-01" @default.
- W4296892994 modified "2023-10-16" @default.
- W4296892994 title "High-throughput mechanistic screening of non-equilibrium inhibitors by a fully automated data analysis pipeline in early drug-discovery" @default.
- W4296892994 cites W1803956524 @default.
- W4296892994 cites W1968620174 @default.
- W4296892994 cites W2016408686 @default.
- W4296892994 cites W2024230958 @default.
- W4296892994 cites W2028279608 @default.
- W4296892994 cites W2054298488 @default.
- W4296892994 cites W2058418533 @default.
- W4296892994 cites W2060383661 @default.
- W4296892994 cites W2074682587 @default.
- W4296892994 cites W2087070363 @default.
- W4296892994 cites W2207535250 @default.
- W4296892994 cites W2281089831 @default.
- W4296892994 cites W2342166807 @default.
- W4296892994 cites W2403670870 @default.
- W4296892994 cites W2775714759 @default.
- W4296892994 cites W2783569768 @default.
- W4296892994 cites W2804335487 @default.
- W4296892994 cites W2936788142 @default.
- W4296892994 cites W2972051445 @default.
- W4296892994 cites W3005439326 @default.
- W4296892994 cites W3092019244 @default.
- W4296892994 cites W3099179819 @default.
- W4296892994 cites W3173740779 @default.
- W4296892994 cites W4212983655 @default.
- W4296892994 doi "https://doi.org/10.1016/j.slasd.2022.09.003" @default.
- W4296892994 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36156314" @default.
- W4296892994 hasPublicationYear "2022" @default.
- W4296892994 type Work @default.
- W4296892994 citedByCount "1" @default.
- W4296892994 countsByYear W42968929942023 @default.
- W4296892994 crossrefType "journal-article" @default.
- W4296892994 hasAuthorship W4296892994A5006496354 @default.
- W4296892994 hasAuthorship W4296892994A5014244021 @default.
- W4296892994 hasAuthorship W4296892994A5014930819 @default.
- W4296892994 hasAuthorship W4296892994A5017901256 @default.
- W4296892994 hasAuthorship W4296892994A5035419940 @default.
- W4296892994 hasAuthorship W4296892994A5042439253 @default.
- W4296892994 hasAuthorship W4296892994A5050338248 @default.
- W4296892994 hasAuthorship W4296892994A5059772830 @default.
- W4296892994 hasAuthorship W4296892994A5066631278 @default.
- W4296892994 hasAuthorship W4296892994A5073785741 @default.
- W4296892994 hasBestOaLocation W42968929941 @default.
- W4296892994 hasConcept C111472728 @default.
- W4296892994 hasConcept C115901376 @default.
- W4296892994 hasConcept C120665830 @default.
- W4296892994 hasConcept C121332964 @default.
- W4296892994 hasConcept C124101348 @default.
- W4296892994 hasConcept C127413603 @default.
- W4296892994 hasConcept C138885662 @default.
- W4296892994 hasConcept C157764524 @default.
- W4296892994 hasConcept C177212765 @default.
- W4296892994 hasConcept C192209626 @default.
- W4296892994 hasConcept C199360897 @default.
- W4296892994 hasConcept C2522767166 @default.
- W4296892994 hasConcept C2779530757 @default.
- W4296892994 hasConcept C41008148 @default.
- W4296892994 hasConcept C43521106 @default.
- W4296892994 hasConcept C48044578 @default.
- W4296892994 hasConcept C555944384 @default.
- W4296892994 hasConcept C60644358 @default.
- W4296892994 hasConcept C74187038 @default.
- W4296892994 hasConcept C76155785 @default.
- W4296892994 hasConcept C77088390 @default.
- W4296892994 hasConcept C78519656 @default.
- W4296892994 hasConcept C86803240 @default.
- W4296892994 hasConceptScore W4296892994C111472728 @default.
- W4296892994 hasConceptScore W4296892994C115901376 @default.
- W4296892994 hasConceptScore W4296892994C120665830 @default.
- W4296892994 hasConceptScore W4296892994C121332964 @default.
- W4296892994 hasConceptScore W4296892994C124101348 @default.
- W4296892994 hasConceptScore W4296892994C127413603 @default.
- W4296892994 hasConceptScore W4296892994C138885662 @default.
- W4296892994 hasConceptScore W4296892994C157764524 @default.
- W4296892994 hasConceptScore W4296892994C177212765 @default.
- W4296892994 hasConceptScore W4296892994C192209626 @default.
- W4296892994 hasConceptScore W4296892994C199360897 @default.
- W4296892994 hasConceptScore W4296892994C2522767166 @default.
- W4296892994 hasConceptScore W4296892994C2779530757 @default.
- W4296892994 hasConceptScore W4296892994C41008148 @default.
- W4296892994 hasConceptScore W4296892994C43521106 @default.
- W4296892994 hasConceptScore W4296892994C48044578 @default.
- W4296892994 hasConceptScore W4296892994C555944384 @default.
- W4296892994 hasConceptScore W4296892994C60644358 @default.