Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296893326> ?p ?o ?g. }
- W4296893326 endingPage "e10691" @default.
- W4296893326 startingPage "e10691" @default.
- W4296893326 abstract "Globally all countries encounter air pollution problems along their development path. As a significant indicator of air quality, PM2.5 concentration has long been proven to be affecting the population’s death rate. Machine learning algorithms proven to outperform traditional statistical approaches are widely used in air pollution prediction. However research on the model selection discussion and environmental interpretation of model prediction results is still scarce and urgently needed to lead the policy making on air pollution control. Our research compared four types of machine learning algorisms LinearSVR, K-Nearest Neighbor, Lasso regression, Gradient boosting by looking into their performance in predicting PM2.5 concentrations among different cities and seasons. The results show that the machine learning model is able to forecast the next day PM2.5 concentration based on the previous five days' data with better accuracy. The comparative experiments show that based on city level the Gradient Boosting prediction model has better prediction performance with mean absolute error (MAE) of 9 ug/m3 and root mean square error (RMSE) of 10.25–16.76 ug/m3, lower compared with the other three models, and based on season level four models have the best prediction performances in winter time and the worst in summer time. And more importantly the demonstration of models' different performances in each city and each season is of great significance in environmental policy implications." @default.
- W4296893326 created "2022-09-24" @default.
- W4296893326 creator A5021133910 @default.
- W4296893326 creator A5030957155 @default.
- W4296893326 creator A5039281182 @default.
- W4296893326 creator A5043617746 @default.
- W4296893326 creator A5044184865 @default.
- W4296893326 creator A5090297072 @default.
- W4296893326 date "2022-09-01" @default.
- W4296893326 modified "2023-10-17" @default.
- W4296893326 title "Time series-based PM2.5 concentration prediction in Jing-Jin-Ji area using machine learning algorithm models" @default.
- W4296893326 cites W1901616594 @default.
- W4296893326 cites W2034861865 @default.
- W4296893326 cites W2038923309 @default.
- W4296893326 cites W2061232022 @default.
- W4296893326 cites W2077925494 @default.
- W4296893326 cites W2092643666 @default.
- W4296893326 cites W2272706126 @default.
- W4296893326 cites W2275537745 @default.
- W4296893326 cites W2289128632 @default.
- W4296893326 cites W2327731887 @default.
- W4296893326 cites W2331700789 @default.
- W4296893326 cites W2553839055 @default.
- W4296893326 cites W2789613182 @default.
- W4296893326 cites W2888532083 @default.
- W4296893326 cites W2945640320 @default.
- W4296893326 cites W2966841192 @default.
- W4296893326 cites W2974202804 @default.
- W4296893326 cites W2978577426 @default.
- W4296893326 cites W2981685989 @default.
- W4296893326 cites W2990184492 @default.
- W4296893326 cites W2994653535 @default.
- W4296893326 cites W2998884377 @default.
- W4296893326 cites W3005276465 @default.
- W4296893326 cites W3033154016 @default.
- W4296893326 cites W3036735067 @default.
- W4296893326 cites W3046552584 @default.
- W4296893326 cites W3046975334 @default.
- W4296893326 cites W3081059856 @default.
- W4296893326 cites W3081125651 @default.
- W4296893326 cites W3087558403 @default.
- W4296893326 cites W3114314572 @default.
- W4296893326 cites W3131333586 @default.
- W4296893326 cites W3131411810 @default.
- W4296893326 cites W3132467470 @default.
- W4296893326 cites W3135083987 @default.
- W4296893326 cites W3139731355 @default.
- W4296893326 cites W3142343267 @default.
- W4296893326 cites W3156954244 @default.
- W4296893326 cites W3165356482 @default.
- W4296893326 cites W3185877013 @default.
- W4296893326 cites W3200680410 @default.
- W4296893326 cites W3210242925 @default.
- W4296893326 cites W4220844774 @default.
- W4296893326 cites W4239510810 @default.
- W4296893326 doi "https://doi.org/10.1016/j.heliyon.2022.e10691" @default.
- W4296893326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36185154" @default.
- W4296893326 hasPublicationYear "2022" @default.
- W4296893326 type Work @default.
- W4296893326 citedByCount "3" @default.
- W4296893326 countsByYear W42968933262023 @default.
- W4296893326 crossrefType "journal-article" @default.
- W4296893326 hasAuthorship W4296893326A5021133910 @default.
- W4296893326 hasAuthorship W4296893326A5030957155 @default.
- W4296893326 hasAuthorship W4296893326A5039281182 @default.
- W4296893326 hasAuthorship W4296893326A5043617746 @default.
- W4296893326 hasAuthorship W4296893326A5044184865 @default.
- W4296893326 hasAuthorship W4296893326A5090297072 @default.
- W4296893326 hasBestOaLocation W42968933261 @default.
- W4296893326 hasConcept C105795698 @default.
- W4296893326 hasConcept C11413529 @default.
- W4296893326 hasConcept C119857082 @default.
- W4296893326 hasConcept C126314574 @default.
- W4296893326 hasConcept C136764020 @default.
- W4296893326 hasConcept C139945424 @default.
- W4296893326 hasConcept C151406439 @default.
- W4296893326 hasConcept C153294291 @default.
- W4296893326 hasConcept C154945302 @default.
- W4296893326 hasConcept C169258074 @default.
- W4296893326 hasConcept C178790620 @default.
- W4296893326 hasConcept C185592680 @default.
- W4296893326 hasConcept C205649164 @default.
- W4296893326 hasConcept C33923547 @default.
- W4296893326 hasConcept C37616216 @default.
- W4296893326 hasConcept C41008148 @default.
- W4296893326 hasConcept C45804977 @default.
- W4296893326 hasConcept C46686674 @default.
- W4296893326 hasConcept C559116025 @default.
- W4296893326 hasConcept C70153297 @default.
- W4296893326 hasConceptScore W4296893326C105795698 @default.
- W4296893326 hasConceptScore W4296893326C11413529 @default.
- W4296893326 hasConceptScore W4296893326C119857082 @default.
- W4296893326 hasConceptScore W4296893326C126314574 @default.
- W4296893326 hasConceptScore W4296893326C136764020 @default.
- W4296893326 hasConceptScore W4296893326C139945424 @default.
- W4296893326 hasConceptScore W4296893326C151406439 @default.
- W4296893326 hasConceptScore W4296893326C153294291 @default.
- W4296893326 hasConceptScore W4296893326C154945302 @default.