Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296900767> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4296900767 endingPage "577" @default.
- W4296900767 startingPage "553" @default.
- W4296900767 abstract "Abstract In the cluster analysis literature, there are several partitioning (non-hierarchical) methods for clustering multivariate objects based on model estimation. Distinct to these methods is the use of a system of n nested statistical models and the optimization of a loss function to best-fit a clustering model to observed data. Many hierarchical clustering methods are not model-based where hierarchy is obtained using a divisive or agglomerative greedy procedure. This paper aims to fill this gap by proposing a novel hierarchical cluster analysis methodology called Hierarchical Means Clustering. HMC produces a set of nested partitions with a centroid-based model estimated via least-squares by minimizing the total within-cluster deviance of the n partitions in the hierarchy. Hierarchical Means Clustering produces a hierarchy formed by n -1 nested partitions from 2 to n clusters with minimal total cluster deviance. Six real data examples are featured, and key links to k -means, Ward’s method, Bisecting k -means and model-based hierarchical agglomerative clustering methods are discussed." @default.
- W4296900767 created "2022-09-24" @default.
- W4296900767 creator A5015179218 @default.
- W4296900767 creator A5016116024 @default.
- W4296900767 creator A5027243034 @default.
- W4296900767 date "2022-09-23" @default.
- W4296900767 modified "2023-09-26" @default.
- W4296900767 title "Hierarchical Means Clustering" @default.
- W4296900767 cites W156509570 @default.
- W4296900767 cites W1970362198 @default.
- W4296900767 cites W1975120776 @default.
- W4296900767 cites W2008624417 @default.
- W4296900767 cites W2016381774 @default.
- W4296900767 cites W2022337843 @default.
- W4296900767 cites W2033403400 @default.
- W4296900767 cites W2049017883 @default.
- W4296900767 cites W2051845845 @default.
- W4296900767 cites W2055063781 @default.
- W4296900767 cites W2055764977 @default.
- W4296900767 cites W2066077440 @default.
- W4296900767 cites W2082503527 @default.
- W4296900767 cites W2082583687 @default.
- W4296900767 cites W2137111266 @default.
- W4296900767 cites W2149596792 @default.
- W4296900767 cites W2150593711 @default.
- W4296900767 cites W2166865790 @default.
- W4296900767 cites W2202951610 @default.
- W4296900767 cites W2479531384 @default.
- W4296900767 cites W2496585406 @default.
- W4296900767 cites W2519132385 @default.
- W4296900767 cites W3096463949 @default.
- W4296900767 cites W4235169531 @default.
- W4296900767 cites W4295306962 @default.
- W4296900767 doi "https://doi.org/10.1007/s00357-022-09419-7" @default.
- W4296900767 hasPublicationYear "2022" @default.
- W4296900767 type Work @default.
- W4296900767 citedByCount "2" @default.
- W4296900767 countsByYear W42969007672023 @default.
- W4296900767 crossrefType "journal-article" @default.
- W4296900767 hasAuthorship W4296900767A5015179218 @default.
- W4296900767 hasAuthorship W4296900767A5016116024 @default.
- W4296900767 hasAuthorship W4296900767A5027243034 @default.
- W4296900767 hasBestOaLocation W42969007671 @default.
- W4296900767 hasConcept C104047586 @default.
- W4296900767 hasConcept C105795698 @default.
- W4296900767 hasConcept C124101348 @default.
- W4296900767 hasConcept C144986985 @default.
- W4296900767 hasConcept C153180895 @default.
- W4296900767 hasConcept C154945302 @default.
- W4296900767 hasConcept C162324750 @default.
- W4296900767 hasConcept C177599991 @default.
- W4296900767 hasConcept C22648726 @default.
- W4296900767 hasConcept C31170391 @default.
- W4296900767 hasConcept C33923547 @default.
- W4296900767 hasConcept C34447519 @default.
- W4296900767 hasConcept C41008148 @default.
- W4296900767 hasConcept C73555534 @default.
- W4296900767 hasConcept C82261393 @default.
- W4296900767 hasConcept C92835128 @default.
- W4296900767 hasConcept C94641424 @default.
- W4296900767 hasConceptScore W4296900767C104047586 @default.
- W4296900767 hasConceptScore W4296900767C105795698 @default.
- W4296900767 hasConceptScore W4296900767C124101348 @default.
- W4296900767 hasConceptScore W4296900767C144986985 @default.
- W4296900767 hasConceptScore W4296900767C153180895 @default.
- W4296900767 hasConceptScore W4296900767C154945302 @default.
- W4296900767 hasConceptScore W4296900767C162324750 @default.
- W4296900767 hasConceptScore W4296900767C177599991 @default.
- W4296900767 hasConceptScore W4296900767C22648726 @default.
- W4296900767 hasConceptScore W4296900767C31170391 @default.
- W4296900767 hasConceptScore W4296900767C33923547 @default.
- W4296900767 hasConceptScore W4296900767C34447519 @default.
- W4296900767 hasConceptScore W4296900767C41008148 @default.
- W4296900767 hasConceptScore W4296900767C73555534 @default.
- W4296900767 hasConceptScore W4296900767C82261393 @default.
- W4296900767 hasConceptScore W4296900767C92835128 @default.
- W4296900767 hasConceptScore W4296900767C94641424 @default.
- W4296900767 hasIssue "3" @default.
- W4296900767 hasLocation W42969007671 @default.
- W4296900767 hasLocation W42969007672 @default.
- W4296900767 hasLocation W42969007673 @default.
- W4296900767 hasLocation W42969007674 @default.
- W4296900767 hasOpenAccess W4296900767 @default.
- W4296900767 hasPrimaryLocation W42969007671 @default.
- W4296900767 hasRelatedWork W1875557084 @default.
- W4296900767 hasRelatedWork W2353797829 @default.
- W4296900767 hasRelatedWork W2367205823 @default.
- W4296900767 hasRelatedWork W2384052049 @default.
- W4296900767 hasRelatedWork W2385630304 @default.
- W4296900767 hasRelatedWork W2592952084 @default.
- W4296900767 hasRelatedWork W2993907049 @default.
- W4296900767 hasRelatedWork W4200404937 @default.
- W4296900767 hasRelatedWork W4231226332 @default.
- W4296900767 hasRelatedWork W4241767317 @default.
- W4296900767 hasVolume "39" @default.
- W4296900767 isParatext "false" @default.
- W4296900767 isRetracted "false" @default.
- W4296900767 workType "article" @default.