Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296904623> ?p ?o ?g. }
- W4296904623 endingPage "104195" @default.
- W4296904623 startingPage "104195" @default.
- W4296904623 abstract "Deep forest has recently received much attention, mainly from the machine learning community, because it has fewer hyper-parameters, better performance, and is easier to construct than deep neural networks. This approach, as well as its variations, are commonly used for image classification, face recognition, music classification, and other related tasks. Its potential in survival analysis, on the other hand, has yet to be determined. In this paper, we propose a deep survival forests framework for modeling right-censored data with high and ultra-high dimensional covariates. We construct the proposed framework by merging the cascade survival forest structure with a feature screening mechanism. Experimental and statistical analysis results on well-known ultra-high and high-dimensional datasets show that the proposed methodology outperforms popular machine learning-based methods such as deep neural survival networks, random survival forests and their several variants in terms of prediction accuracy." @default.
- W4296904623 created "2022-09-24" @default.
- W4296904623 creator A5000505492 @default.
- W4296904623 creator A5004117781 @default.
- W4296904623 creator A5033020983 @default.
- W4296904623 creator A5034902135 @default.
- W4296904623 creator A5082526624 @default.
- W4296904623 date "2023-01-01" @default.
- W4296904623 modified "2023-10-01" @default.
- W4296904623 title "Deep survival forests with feature screening" @default.
- W4296904623 cites W1501470069 @default.
- W4296904623 cites W1980485115 @default.
- W4296904623 cites W1985516812 @default.
- W4296904623 cites W1986546598 @default.
- W4296904623 cites W2016119924 @default.
- W4296904623 cites W2039656279 @default.
- W4296904623 cites W2057742514 @default.
- W4296904623 cites W2064347825 @default.
- W4296904623 cites W2064491951 @default.
- W4296904623 cites W2074703669 @default.
- W4296904623 cites W2079272365 @default.
- W4296904623 cites W2083972068 @default.
- W4296904623 cites W2084139018 @default.
- W4296904623 cites W2088160256 @default.
- W4296904623 cites W2112796928 @default.
- W4296904623 cites W2128985829 @default.
- W4296904623 cites W2133128923 @default.
- W4296904623 cites W2136848157 @default.
- W4296904623 cites W2150791259 @default.
- W4296904623 cites W2154560360 @default.
- W4296904623 cites W2157840751 @default.
- W4296904623 cites W2160815625 @default.
- W4296904623 cites W2412782625 @default.
- W4296904623 cites W2592340788 @default.
- W4296904623 cites W2753919178 @default.
- W4296904623 cites W2774254981 @default.
- W4296904623 cites W2800838101 @default.
- W4296904623 cites W2900927807 @default.
- W4296904623 cites W2908881949 @default.
- W4296904623 cites W2911964244 @default.
- W4296904623 cites W2962933532 @default.
- W4296904623 cites W2980392895 @default.
- W4296904623 cites W3021952014 @default.
- W4296904623 cites W3099478002 @default.
- W4296904623 cites W3102708157 @default.
- W4296904623 cites W3193071789 @default.
- W4296904623 cites W4233019352 @default.
- W4296904623 cites W4245958676 @default.
- W4296904623 cites W4293241248 @default.
- W4296904623 doi "https://doi.org/10.1016/j.bspc.2022.104195" @default.
- W4296904623 hasPublicationYear "2023" @default.
- W4296904623 type Work @default.
- W4296904623 citedByCount "0" @default.
- W4296904623 crossrefType "journal-article" @default.
- W4296904623 hasAuthorship W4296904623A5000505492 @default.
- W4296904623 hasAuthorship W4296904623A5004117781 @default.
- W4296904623 hasAuthorship W4296904623A5033020983 @default.
- W4296904623 hasAuthorship W4296904623A5034902135 @default.
- W4296904623 hasAuthorship W4296904623A5082526624 @default.
- W4296904623 hasConcept C10515644 @default.
- W4296904623 hasConcept C105795698 @default.
- W4296904623 hasConcept C108583219 @default.
- W4296904623 hasConcept C119043178 @default.
- W4296904623 hasConcept C119857082 @default.
- W4296904623 hasConcept C138885662 @default.
- W4296904623 hasConcept C153180895 @default.
- W4296904623 hasConcept C154945302 @default.
- W4296904623 hasConcept C169258074 @default.
- W4296904623 hasConcept C185592680 @default.
- W4296904623 hasConcept C199360897 @default.
- W4296904623 hasConcept C2776401178 @default.
- W4296904623 hasConcept C2780801425 @default.
- W4296904623 hasConcept C2984842247 @default.
- W4296904623 hasConcept C3019722297 @default.
- W4296904623 hasConcept C33923547 @default.
- W4296904623 hasConcept C34146451 @default.
- W4296904623 hasConcept C41008148 @default.
- W4296904623 hasConcept C41895202 @default.
- W4296904623 hasConcept C43617362 @default.
- W4296904623 hasConcept C50644808 @default.
- W4296904623 hasConceptScore W4296904623C10515644 @default.
- W4296904623 hasConceptScore W4296904623C105795698 @default.
- W4296904623 hasConceptScore W4296904623C108583219 @default.
- W4296904623 hasConceptScore W4296904623C119043178 @default.
- W4296904623 hasConceptScore W4296904623C119857082 @default.
- W4296904623 hasConceptScore W4296904623C138885662 @default.
- W4296904623 hasConceptScore W4296904623C153180895 @default.
- W4296904623 hasConceptScore W4296904623C154945302 @default.
- W4296904623 hasConceptScore W4296904623C169258074 @default.
- W4296904623 hasConceptScore W4296904623C185592680 @default.
- W4296904623 hasConceptScore W4296904623C199360897 @default.
- W4296904623 hasConceptScore W4296904623C2776401178 @default.
- W4296904623 hasConceptScore W4296904623C2780801425 @default.
- W4296904623 hasConceptScore W4296904623C2984842247 @default.
- W4296904623 hasConceptScore W4296904623C3019722297 @default.
- W4296904623 hasConceptScore W4296904623C33923547 @default.
- W4296904623 hasConceptScore W4296904623C34146451 @default.
- W4296904623 hasConceptScore W4296904623C41008148 @default.