Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296908338> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4296908338 abstract "Abstract Genomic selection models use Single Nucleotide Polymorphism (SNP) markers to predict phenotypes. However, these predictive models face challenges due to the high dimensionality of genome-wide SNP marker data. Thanks to recent breakthroughs in DNA sequencing and decreased sequencing cost, the study of novel genomic variants such as Structural Variations (SVs) and Transposable Elements (TEs) become increasingly prevalent. In this paper, we develop a deep convolutional neural network model, NovGMDeep , to predict phenotypes using SVs and TEs markers for genomic selection. The proposed model is trained and tested on samples of A. thaliana and O. sativa using k -fold cross-validation. The prediction accuracy is evaluated using Pearson’s Correlation Coefficient (PCC), Mean Absolute Error (MAE), and Standard Deviation (SD) of MAE. The predicted results showed higher correlation when the model is trained with SVs and TEs than with SNPs. NovGMDeep also has higher prediction accuracy when comparing with conventional statistical models. This work sheds light on the unrecognized function of SVs and TEs in genotype-to-phenotype associations, as well as their extensive significance and value in crop development." @default.
- W4296908338 created "2022-09-24" @default.
- W4296908338 creator A5031638967 @default.
- W4296908338 creator A5049342290 @default.
- W4296908338 creator A5089050646 @default.
- W4296908338 date "2022-09-22" @default.
- W4296908338 modified "2023-09-29" @default.
- W4296908338 title "Predicting Phenotypes From Novel Genomic Markers Using Deep Learning" @default.
- W4296908338 cites W104341447 @default.
- W4296908338 cites W1498436455 @default.
- W4296908338 cites W1969073369 @default.
- W4296908338 cites W1987075379 @default.
- W4296908338 cites W2064013109 @default.
- W4296908338 cites W2066392039 @default.
- W4296908338 cites W2091432990 @default.
- W4296908338 cites W2101350700 @default.
- W4296908338 cites W2115100650 @default.
- W4296908338 cites W2121743800 @default.
- W4296908338 cites W2124600498 @default.
- W4296908338 cites W2162212014 @default.
- W4296908338 cites W2311607323 @default.
- W4296908338 cites W2409013835 @default.
- W4296908338 cites W2419574648 @default.
- W4296908338 cites W2462342490 @default.
- W4296908338 cites W2502949459 @default.
- W4296908338 cites W2787894218 @default.
- W4296908338 cites W2789876780 @default.
- W4296908338 cites W2811394785 @default.
- W4296908338 cites W2884001105 @default.
- W4296908338 cites W2884367402 @default.
- W4296908338 cites W2887039631 @default.
- W4296908338 cites W2919115771 @default.
- W4296908338 cites W2981780393 @default.
- W4296908338 cites W3107613164 @default.
- W4296908338 cites W3136308181 @default.
- W4296908338 cites W3164856426 @default.
- W4296908338 cites W3169325684 @default.
- W4296908338 cites W4200476154 @default.
- W4296908338 doi "https://doi.org/10.1101/2022.09.21.508954" @default.
- W4296908338 hasPublicationYear "2022" @default.
- W4296908338 type Work @default.
- W4296908338 citedByCount "0" @default.
- W4296908338 crossrefType "posted-content" @default.
- W4296908338 hasAuthorship W4296908338A5031638967 @default.
- W4296908338 hasAuthorship W4296908338A5049342290 @default.
- W4296908338 hasAuthorship W4296908338A5089050646 @default.
- W4296908338 hasBestOaLocation W42969083381 @default.
- W4296908338 hasConcept C104317684 @default.
- W4296908338 hasConcept C105795698 @default.
- W4296908338 hasConcept C135763542 @default.
- W4296908338 hasConcept C139275648 @default.
- W4296908338 hasConcept C153209595 @default.
- W4296908338 hasConcept C154945302 @default.
- W4296908338 hasConcept C33923547 @default.
- W4296908338 hasConcept C41008148 @default.
- W4296908338 hasConcept C54355233 @default.
- W4296908338 hasConcept C55078378 @default.
- W4296908338 hasConcept C70721500 @default.
- W4296908338 hasConcept C81363708 @default.
- W4296908338 hasConcept C86803240 @default.
- W4296908338 hasConceptScore W4296908338C104317684 @default.
- W4296908338 hasConceptScore W4296908338C105795698 @default.
- W4296908338 hasConceptScore W4296908338C135763542 @default.
- W4296908338 hasConceptScore W4296908338C139275648 @default.
- W4296908338 hasConceptScore W4296908338C153209595 @default.
- W4296908338 hasConceptScore W4296908338C154945302 @default.
- W4296908338 hasConceptScore W4296908338C33923547 @default.
- W4296908338 hasConceptScore W4296908338C41008148 @default.
- W4296908338 hasConceptScore W4296908338C54355233 @default.
- W4296908338 hasConceptScore W4296908338C55078378 @default.
- W4296908338 hasConceptScore W4296908338C70721500 @default.
- W4296908338 hasConceptScore W4296908338C81363708 @default.
- W4296908338 hasConceptScore W4296908338C86803240 @default.
- W4296908338 hasLocation W42969083381 @default.
- W4296908338 hasOpenAccess W4296908338 @default.
- W4296908338 hasPrimaryLocation W42969083381 @default.
- W4296908338 hasRelatedWork W1517693310 @default.
- W4296908338 hasRelatedWork W2004587677 @default.
- W4296908338 hasRelatedWork W2075926380 @default.
- W4296908338 hasRelatedWork W2098237481 @default.
- W4296908338 hasRelatedWork W2107417504 @default.
- W4296908338 hasRelatedWork W2327017833 @default.
- W4296908338 hasRelatedWork W2378377689 @default.
- W4296908338 hasRelatedWork W2379353909 @default.
- W4296908338 hasRelatedWork W2406362019 @default.
- W4296908338 hasRelatedWork W860817473 @default.
- W4296908338 isParatext "false" @default.
- W4296908338 isRetracted "false" @default.
- W4296908338 workType "article" @default.