Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296916018> ?p ?o ?g. }
- W4296916018 endingPage "3374" @default.
- W4296916018 startingPage "3365" @default.
- W4296916018 abstract "This paper focuses on designing measurement-based optimal stealthy attacks for linear cyber-physical systems (CPSs), where attackers aim to deteriorate the performance of remote state estimation and keep ϵ-stealthy to Kullback-Leibler divergence detector. Instead of constructing a linear attack directly, we consider a more general attack model with an arbitrary distribution to reveal the correlations between attacks and the stealth level ϵ. By solving a convex optimization problem, the mean and variance of optimal attacks on common unprotected systems are obtained. Not limited to zero mean Gaussian attacks, the derived optimal attacks can also obey non-zero mean Gaussian distribution and degenerate to the former in some special cases. For protected systems equipped with encryption procedures, a general criterion for the selection of attacked channels is given. Finally, an unmanned aerial vehicle (UAV) example is provided to verify the effectiveness of the theoretical results." @default.
- W4296916018 created "2022-09-24" @default.
- W4296916018 creator A5027703571 @default.
- W4296916018 creator A5048111142 @default.
- W4296916018 date "2022-01-01" @default.
- W4296916018 modified "2023-10-14" @default.
- W4296916018 title "Measurement-Based Optimal Stealthy Attacks on Remote State Estimation" @default.
- W4296916018 cites W1536023576 @default.
- W4296916018 cites W1972523481 @default.
- W4296916018 cites W2064284013 @default.
- W4296916018 cites W2105773843 @default.
- W4296916018 cites W2400117891 @default.
- W4296916018 cites W2402911760 @default.
- W4296916018 cites W2555431798 @default.
- W4296916018 cites W2568479698 @default.
- W4296916018 cites W2589039213 @default.
- W4296916018 cites W2613841561 @default.
- W4296916018 cites W2627024038 @default.
- W4296916018 cites W2765351912 @default.
- W4296916018 cites W2780545917 @default.
- W4296916018 cites W2786271639 @default.
- W4296916018 cites W2811475107 @default.
- W4296916018 cites W2906912256 @default.
- W4296916018 cites W2907018391 @default.
- W4296916018 cites W2907763162 @default.
- W4296916018 cites W2914608166 @default.
- W4296916018 cites W2920505407 @default.
- W4296916018 cites W2948566387 @default.
- W4296916018 cites W2953414344 @default.
- W4296916018 cites W2959889059 @default.
- W4296916018 cites W2961536906 @default.
- W4296916018 cites W2970458365 @default.
- W4296916018 cites W2971591696 @default.
- W4296916018 cites W2971723304 @default.
- W4296916018 cites W2982304490 @default.
- W4296916018 cites W2987728396 @default.
- W4296916018 cites W3010993064 @default.
- W4296916018 cites W3039187353 @default.
- W4296916018 cites W3043386701 @default.
- W4296916018 cites W3048667249 @default.
- W4296916018 cites W3092300309 @default.
- W4296916018 cites W3099086397 @default.
- W4296916018 cites W3103297508 @default.
- W4296916018 cites W3106420340 @default.
- W4296916018 cites W3112171652 @default.
- W4296916018 cites W3116298211 @default.
- W4296916018 cites W3156988562 @default.
- W4296916018 cites W3170936729 @default.
- W4296916018 cites W3183805430 @default.
- W4296916018 doi "https://doi.org/10.1109/tifs.2022.3206419" @default.
- W4296916018 hasPublicationYear "2022" @default.
- W4296916018 type Work @default.
- W4296916018 citedByCount "2" @default.
- W4296916018 countsByYear W42969160182023 @default.
- W4296916018 crossrefType "journal-article" @default.
- W4296916018 hasAuthorship W4296916018A5027703571 @default.
- W4296916018 hasAuthorship W4296916018A5048111142 @default.
- W4296916018 hasConcept C111919701 @default.
- W4296916018 hasConcept C11413529 @default.
- W4296916018 hasConcept C121332964 @default.
- W4296916018 hasConcept C121955636 @default.
- W4296916018 hasConcept C126255220 @default.
- W4296916018 hasConcept C137836250 @default.
- W4296916018 hasConcept C138885662 @default.
- W4296916018 hasConcept C144133560 @default.
- W4296916018 hasConcept C148730421 @default.
- W4296916018 hasConcept C154945302 @default.
- W4296916018 hasConcept C163716315 @default.
- W4296916018 hasConcept C171752962 @default.
- W4296916018 hasConcept C179768478 @default.
- W4296916018 hasConcept C196083921 @default.
- W4296916018 hasConcept C207390915 @default.
- W4296916018 hasConcept C33923547 @default.
- W4296916018 hasConcept C38652104 @default.
- W4296916018 hasConcept C41008148 @default.
- W4296916018 hasConcept C41895202 @default.
- W4296916018 hasConcept C48103436 @default.
- W4296916018 hasConcept C62520636 @default.
- W4296916018 hasConcept C76155785 @default.
- W4296916018 hasConcept C94915269 @default.
- W4296916018 hasConceptScore W4296916018C111919701 @default.
- W4296916018 hasConceptScore W4296916018C11413529 @default.
- W4296916018 hasConceptScore W4296916018C121332964 @default.
- W4296916018 hasConceptScore W4296916018C121955636 @default.
- W4296916018 hasConceptScore W4296916018C126255220 @default.
- W4296916018 hasConceptScore W4296916018C137836250 @default.
- W4296916018 hasConceptScore W4296916018C138885662 @default.
- W4296916018 hasConceptScore W4296916018C144133560 @default.
- W4296916018 hasConceptScore W4296916018C148730421 @default.
- W4296916018 hasConceptScore W4296916018C154945302 @default.
- W4296916018 hasConceptScore W4296916018C163716315 @default.
- W4296916018 hasConceptScore W4296916018C171752962 @default.
- W4296916018 hasConceptScore W4296916018C179768478 @default.
- W4296916018 hasConceptScore W4296916018C196083921 @default.
- W4296916018 hasConceptScore W4296916018C207390915 @default.
- W4296916018 hasConceptScore W4296916018C33923547 @default.
- W4296916018 hasConceptScore W4296916018C38652104 @default.
- W4296916018 hasConceptScore W4296916018C41008148 @default.