Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296969773> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4296969773 endingPage "108402" @default.
- W4296969773 startingPage "108402" @default.
- W4296969773 abstract "Pneumonia is one of the most common lung diseases for children. Computer-aided diagnosis (CAD) can be utilized to achieve automated lung disease detection using artificial intelligence techniques . This paper proposes a hybrid deep model of pretrained convolutional neural network (CNN) and long short-term memory (LSTM) networks to identify bacterial pneumonia versus viral pneumonia diseases in pediatric chest radiography. Extensive experiments have been conducted in two main scenarios, namely, pneumonia versus normal cases and bacterial pneumonia versus viral pneumonia infections. Evaluation of the results showed that the proposed deep classifiers achieved an accuracy and area under curve (AUC) of 98.6% and 99.9%, respectively, for normal versus pneumonia scenario. Meanwhile, the obtained accuracy and AUC are 92.3% and 94.5%, respectively, for bacterial pneumonia versus viral pneumonia classification . Compared to deep models in previous studies, our hybrid classifiers of CNN and LSTM networks have relatively better performance to assist radiologists during the scanning procedure of the child's lungs." @default.
- W4296969773 created "2022-09-25" @default.
- W4296969773 creator A5002922352 @default.
- W4296969773 creator A5028293941 @default.
- W4296969773 creator A5033790924 @default.
- W4296969773 creator A5037019550 @default.
- W4296969773 date "2022-10-01" @default.
- W4296969773 modified "2023-10-16" @default.
- W4296969773 title "Computer-assisted lung diseases detection from pediatric chest radiography using long short-term memory networks" @default.
- W4296969773 cites W2154347286 @default.
- W4296969773 cites W2788633781 @default.
- W4296969773 cites W2891756914 @default.
- W4296969773 cites W2956123709 @default.
- W4296969773 cites W2983339698 @default.
- W4296969773 cites W2998957378 @default.
- W4296969773 cites W3018007233 @default.
- W4296969773 cites W3018407595 @default.
- W4296969773 cites W3048749423 @default.
- W4296969773 cites W3087275632 @default.
- W4296969773 cites W3127020108 @default.
- W4296969773 cites W3130886625 @default.
- W4296969773 cites W3139379779 @default.
- W4296969773 cites W3150741721 @default.
- W4296969773 cites W3184418213 @default.
- W4296969773 cites W4220665389 @default.
- W4296969773 doi "https://doi.org/10.1016/j.compeleceng.2022.108402" @default.
- W4296969773 hasPublicationYear "2022" @default.
- W4296969773 type Work @default.
- W4296969773 citedByCount "3" @default.
- W4296969773 countsByYear W42969697732023 @default.
- W4296969773 crossrefType "journal-article" @default.
- W4296969773 hasAuthorship W4296969773A5002922352 @default.
- W4296969773 hasAuthorship W4296969773A5028293941 @default.
- W4296969773 hasAuthorship W4296969773A5033790924 @default.
- W4296969773 hasAuthorship W4296969773A5037019550 @default.
- W4296969773 hasConcept C121332964 @default.
- W4296969773 hasConcept C126322002 @default.
- W4296969773 hasConcept C126838900 @default.
- W4296969773 hasConcept C177713679 @default.
- W4296969773 hasConcept C19527891 @default.
- W4296969773 hasConcept C2777714996 @default.
- W4296969773 hasConcept C36454342 @default.
- W4296969773 hasConcept C41008148 @default.
- W4296969773 hasConcept C61797465 @default.
- W4296969773 hasConcept C62520636 @default.
- W4296969773 hasConcept C71924100 @default.
- W4296969773 hasConceptScore W4296969773C121332964 @default.
- W4296969773 hasConceptScore W4296969773C126322002 @default.
- W4296969773 hasConceptScore W4296969773C126838900 @default.
- W4296969773 hasConceptScore W4296969773C177713679 @default.
- W4296969773 hasConceptScore W4296969773C19527891 @default.
- W4296969773 hasConceptScore W4296969773C2777714996 @default.
- W4296969773 hasConceptScore W4296969773C36454342 @default.
- W4296969773 hasConceptScore W4296969773C41008148 @default.
- W4296969773 hasConceptScore W4296969773C61797465 @default.
- W4296969773 hasConceptScore W4296969773C62520636 @default.
- W4296969773 hasConceptScore W4296969773C71924100 @default.
- W4296969773 hasFunder F4320324457 @default.
- W4296969773 hasLocation W42969697731 @default.
- W4296969773 hasOpenAccess W4296969773 @default.
- W4296969773 hasPrimaryLocation W42969697731 @default.
- W4296969773 hasRelatedWork W1568701304 @default.
- W4296969773 hasRelatedWork W1988052614 @default.
- W4296969773 hasRelatedWork W2411545073 @default.
- W4296969773 hasRelatedWork W2748952813 @default.
- W4296969773 hasRelatedWork W2899084033 @default.
- W4296969773 hasRelatedWork W4230773746 @default.
- W4296969773 hasRelatedWork W4235484761 @default.
- W4296969773 hasRelatedWork W4250549352 @default.
- W4296969773 hasRelatedWork W4322722608 @default.
- W4296969773 hasRelatedWork W4386041617 @default.
- W4296969773 hasVolume "103" @default.
- W4296969773 isParatext "false" @default.
- W4296969773 isRetracted "false" @default.
- W4296969773 workType "article" @default.