Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296990807> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4296990807 endingPage "639" @default.
- W4296990807 startingPage "623" @default.
- W4296990807 abstract "There exists various neurological disorder based diseases like tumor, sleep disorder, headache, dementia and Epilepsy. Among these, epilepsy is the most common neurological illness in humans, comparable to stroke. Epilepsy is a severe chronic neurological illness that can be discovered through analysis of the signals generated by brain neurons and brain Magnetic resonance imaging (MRI). Neurons are intricately coupled in order to communicate and generate signals from human organs. Due to the complex nature of electroencephalogram (EEG) signals and MRI’s the epileptic seizures detection and brain related problems diagnosis becomes a challenging task. Computer based techniques and machine learning models are continuously giving their contributions to diagnose all such diseases in a better way than the normal process of diagnosis. Their performance may sometime degrade due to missing information, selection of poor classification model and unavailability of quality data that are used to train the models for better prediction. This research work is an attempt to epileptic seizures detection by using a multi focus dataset based on EEG signals and brain MRI. The key steps of this work are: feature extraction having two different streams i.e., EEG using wavelet transformation along with SVD-Entropy, and MRI using convolutional neural network (CNN), after extracting features from both streams, feature fusion is applied to generate feature vector used by support vector machine (SVM) to diagnose the epileptic seizures. From the experimental evaluation and results comparison with the current state-of-the-art techniques, it has been concluded that the performance of the proposed scheme is better than the existing models." @default.
- W4296990807 created "2022-09-25" @default.
- W4296990807 creator A5032854488 @default.
- W4296990807 creator A5065335802 @default.
- W4296990807 date "2023-01-01" @default.
- W4296990807 modified "2023-09-30" @default.
- W4296990807 title "Epileptic Seizures Diagnosis Using Amalgamated Extremely Focused EEG Signals and Brain MRI" @default.
- W4296990807 cites W2606301878 @default.
- W4296990807 cites W2742472784 @default.
- W4296990807 cites W2777670961 @default.
- W4296990807 cites W2914838500 @default.
- W4296990807 cites W2999309192 @default.
- W4296990807 cites W3007223525 @default.
- W4296990807 cites W3023211159 @default.
- W4296990807 cites W3030870789 @default.
- W4296990807 cites W3030988535 @default.
- W4296990807 cites W3043135758 @default.
- W4296990807 cites W3110161572 @default.
- W4296990807 cites W3124539583 @default.
- W4296990807 cites W3124804944 @default.
- W4296990807 cites W3126242280 @default.
- W4296990807 cites W3126745694 @default.
- W4296990807 cites W3165430704 @default.
- W4296990807 cites W3177992706 @default.
- W4296990807 cites W3200351775 @default.
- W4296990807 cites W3212659436 @default.
- W4296990807 cites W4213423983 @default.
- W4296990807 cites W4225665623 @default.
- W4296990807 doi "https://doi.org/10.32604/cmc.2023.032552" @default.
- W4296990807 hasPublicationYear "2023" @default.
- W4296990807 type Work @default.
- W4296990807 citedByCount "2" @default.
- W4296990807 countsByYear W42969908072023 @default.
- W4296990807 crossrefType "journal-article" @default.
- W4296990807 hasAuthorship W4296990807A5032854488 @default.
- W4296990807 hasAuthorship W4296990807A5065335802 @default.
- W4296990807 hasBestOaLocation W42969908071 @default.
- W4296990807 hasConcept C12267149 @default.
- W4296990807 hasConcept C125990524 @default.
- W4296990807 hasConcept C153180895 @default.
- W4296990807 hasConcept C154945302 @default.
- W4296990807 hasConcept C15744967 @default.
- W4296990807 hasConcept C169760540 @default.
- W4296990807 hasConcept C17755696 @default.
- W4296990807 hasConcept C2778186239 @default.
- W4296990807 hasConcept C41008148 @default.
- W4296990807 hasConcept C522805319 @default.
- W4296990807 hasConcept C52622490 @default.
- W4296990807 hasConcept C81363708 @default.
- W4296990807 hasConceptScore W4296990807C12267149 @default.
- W4296990807 hasConceptScore W4296990807C125990524 @default.
- W4296990807 hasConceptScore W4296990807C153180895 @default.
- W4296990807 hasConceptScore W4296990807C154945302 @default.
- W4296990807 hasConceptScore W4296990807C15744967 @default.
- W4296990807 hasConceptScore W4296990807C169760540 @default.
- W4296990807 hasConceptScore W4296990807C17755696 @default.
- W4296990807 hasConceptScore W4296990807C2778186239 @default.
- W4296990807 hasConceptScore W4296990807C41008148 @default.
- W4296990807 hasConceptScore W4296990807C522805319 @default.
- W4296990807 hasConceptScore W4296990807C52622490 @default.
- W4296990807 hasConceptScore W4296990807C81363708 @default.
- W4296990807 hasIssue "1" @default.
- W4296990807 hasLocation W42969908071 @default.
- W4296990807 hasOpenAccess W4296990807 @default.
- W4296990807 hasPrimaryLocation W42969908071 @default.
- W4296990807 hasRelatedWork W2008631356 @default.
- W4296990807 hasRelatedWork W2016645643 @default.
- W4296990807 hasRelatedWork W2025177142 @default.
- W4296990807 hasRelatedWork W2061083669 @default.
- W4296990807 hasRelatedWork W2062401972 @default.
- W4296990807 hasRelatedWork W2162995886 @default.
- W4296990807 hasRelatedWork W2336974148 @default.
- W4296990807 hasRelatedWork W2407773292 @default.
- W4296990807 hasRelatedWork W2422247070 @default.
- W4296990807 hasRelatedWork W2345184372 @default.
- W4296990807 hasVolume "74" @default.
- W4296990807 isParatext "false" @default.
- W4296990807 isRetracted "false" @default.
- W4296990807 workType "article" @default.