Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296991331> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4296991331 endingPage "252" @default.
- W4296991331 startingPage "235" @default.
- W4296991331 abstract "The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats (APT). Extracting attack behaviors, i.e., Tactics, Techniques, Procedures (TTP) from Cyber Threat Intelligence (CTI) can facilitate APT actors’ profiling for an immediate response. However, it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature. Based on the Adversarial Tactics, Techniques and Common Knowledge (ATT&CK) of threat behavior description, this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network (HTN) and Graph Convolutional Network (GCN) to solve this issue. It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence. With the help of the Bidirectional Encoder Representation from Transformers (BERT) pretraining model to analyze the contextual semantics of cyber threat intelligence, the task of threat behavior identification is transformed into a text classification task, which automatically extracts attack behavior in CTI, then identifies the malware and advanced threat actors. The experimental results show that F1 achieve 94.86% and 92.15% for the multi-label classification tasks of tactics and techniques. Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks. The F1 for malware and advanced threat actors identification task reached 98.45% and 99.48%, which are better than the benchmark model in the experiment and achieve state of the art. The model can effectively model threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text." @default.
- W4296991331 created "2022-09-25" @default.
- W4296991331 creator A5003983028 @default.
- W4296991331 creator A5027181520 @default.
- W4296991331 creator A5036837044 @default.
- W4296991331 creator A5040342340 @default.
- W4296991331 creator A5052558807 @default.
- W4296991331 creator A5081939534 @default.
- W4296991331 date "2023-01-01" @default.
- W4296991331 modified "2023-10-16" @default.
- W4296991331 title "Attack Behavior Extraction Based on Heterogeneous Cyberthreat Intelligence and Graph Convolutional Networks" @default.
- W4296991331 cites W2163922914 @default.
- W4296991331 cites W2217433794 @default.
- W4296991331 cites W2604314403 @default.
- W4296991331 cites W2769387903 @default.
- W4296991331 cites W2818789173 @default.
- W4296991331 cites W2964522977 @default.
- W4296991331 cites W3043276386 @default.
- W4296991331 cites W3131477349 @default.
- W4296991331 cites W3134414681 @default.
- W4296991331 cites W3134910374 @default.
- W4296991331 cites W3137781054 @default.
- W4296991331 cites W3140294899 @default.
- W4296991331 cites W3173753074 @default.
- W4296991331 cites W3176289544 @default.
- W4296991331 cites W3184520134 @default.
- W4296991331 cites W3199247724 @default.
- W4296991331 cites W3203668668 @default.
- W4296991331 cites W3204783729 @default.
- W4296991331 cites W3212659436 @default.
- W4296991331 cites W3214128139 @default.
- W4296991331 cites W4200230997 @default.
- W4296991331 cites W4200556213 @default.
- W4296991331 cites W4210257598 @default.
- W4296991331 cites W4213423983 @default.
- W4296991331 cites W639708223 @default.
- W4296991331 doi "https://doi.org/10.32604/cmc.2023.029135" @default.
- W4296991331 hasPublicationYear "2023" @default.
- W4296991331 type Work @default.
- W4296991331 citedByCount "0" @default.
- W4296991331 crossrefType "journal-article" @default.
- W4296991331 hasAuthorship W4296991331A5003983028 @default.
- W4296991331 hasAuthorship W4296991331A5027181520 @default.
- W4296991331 hasAuthorship W4296991331A5036837044 @default.
- W4296991331 hasAuthorship W4296991331A5040342340 @default.
- W4296991331 hasAuthorship W4296991331A5052558807 @default.
- W4296991331 hasAuthorship W4296991331A5081939534 @default.
- W4296991331 hasBestOaLocation W42969913311 @default.
- W4296991331 hasConcept C111919701 @default.
- W4296991331 hasConcept C119857082 @default.
- W4296991331 hasConcept C127413603 @default.
- W4296991331 hasConcept C132525143 @default.
- W4296991331 hasConcept C13280743 @default.
- W4296991331 hasConcept C154945302 @default.
- W4296991331 hasConcept C185798385 @default.
- W4296991331 hasConcept C187191949 @default.
- W4296991331 hasConcept C201995342 @default.
- W4296991331 hasConcept C205649164 @default.
- W4296991331 hasConcept C2780451532 @default.
- W4296991331 hasConcept C38652104 @default.
- W4296991331 hasConcept C41008148 @default.
- W4296991331 hasConcept C541664917 @default.
- W4296991331 hasConcept C80444323 @default.
- W4296991331 hasConceptScore W4296991331C111919701 @default.
- W4296991331 hasConceptScore W4296991331C119857082 @default.
- W4296991331 hasConceptScore W4296991331C127413603 @default.
- W4296991331 hasConceptScore W4296991331C132525143 @default.
- W4296991331 hasConceptScore W4296991331C13280743 @default.
- W4296991331 hasConceptScore W4296991331C154945302 @default.
- W4296991331 hasConceptScore W4296991331C185798385 @default.
- W4296991331 hasConceptScore W4296991331C187191949 @default.
- W4296991331 hasConceptScore W4296991331C201995342 @default.
- W4296991331 hasConceptScore W4296991331C205649164 @default.
- W4296991331 hasConceptScore W4296991331C2780451532 @default.
- W4296991331 hasConceptScore W4296991331C38652104 @default.
- W4296991331 hasConceptScore W4296991331C41008148 @default.
- W4296991331 hasConceptScore W4296991331C541664917 @default.
- W4296991331 hasConceptScore W4296991331C80444323 @default.
- W4296991331 hasIssue "1" @default.
- W4296991331 hasLocation W42969913311 @default.
- W4296991331 hasOpenAccess W4296991331 @default.
- W4296991331 hasPrimaryLocation W42969913311 @default.
- W4296991331 hasRelatedWork W1485630101 @default.
- W4296991331 hasRelatedWork W1827256152 @default.
- W4296991331 hasRelatedWork W1936417930 @default.
- W4296991331 hasRelatedWork W2259219744 @default.
- W4296991331 hasRelatedWork W2348361596 @default.
- W4296991331 hasRelatedWork W2498017833 @default.
- W4296991331 hasRelatedWork W2942650110 @default.
- W4296991331 hasRelatedWork W2961085424 @default.
- W4296991331 hasRelatedWork W2968586400 @default.
- W4296991331 hasRelatedWork W4316087074 @default.
- W4296991331 hasVolume "74" @default.
- W4296991331 isParatext "false" @default.
- W4296991331 isRetracted "false" @default.
- W4296991331 workType "article" @default.