Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297025672> ?p ?o ?g. }
- W4297025672 endingPage "651" @default.
- W4297025672 startingPage "619" @default.
- W4297025672 abstract "The trajectory-based nonadiabatic dynamics simulation of complex systems generally produces a large number of output data containing all details of dynamics evolution. It is not possible to simply view or analyze such a huge amount of high-dimensional data by direct human observation, thus it is necessary to extract or identify a few key coordinates governing the geometric evolution for the simplified understanding of the reaction mechanism that is relevant to chemical intuition. Unsupervised machine learning approaches can help us to analyze the trajectory evolution in the nonadiabatic molecular dynamics. Several dimensionality reduction approaches are briefly discussed and a few examples are given to show the step-by-step analysis protocol. The overall purpose of this chapter is to provide a tutorial review on how to perform the analysis of trajectory evolution." @default.
- W4297025672 created "2022-09-25" @default.
- W4297025672 creator A5057287134 @default.
- W4297025672 creator A5059175011 @default.
- W4297025672 creator A5060285813 @default.
- W4297025672 creator A5078336399 @default.
- W4297025672 date "2023-01-01" @default.
- W4297025672 modified "2023-09-25" @default.
- W4297025672 title "Analysis of nonadiabatic molecular dynamics trajectories" @default.
- W4297025672 cites W1541211828 @default.
- W4297025672 cites W1974526404 @default.
- W4297025672 cites W1978779261 @default.
- W4297025672 cites W1987111416 @default.
- W4297025672 cites W1987236926 @default.
- W4297025672 cites W2001141328 @default.
- W4297025672 cites W2006554089 @default.
- W4297025672 cites W2007572995 @default.
- W4297025672 cites W2008931657 @default.
- W4297025672 cites W2022368043 @default.
- W4297025672 cites W2051036596 @default.
- W4297025672 cites W2065096041 @default.
- W4297025672 cites W2068920655 @default.
- W4297025672 cites W2077412035 @default.
- W4297025672 cites W2089468765 @default.
- W4297025672 cites W2093402979 @default.
- W4297025672 cites W2096394554 @default.
- W4297025672 cites W2099793983 @default.
- W4297025672 cites W2101178695 @default.
- W4297025672 cites W2104734478 @default.
- W4297025672 cites W2108107014 @default.
- W4297025672 cites W2110283311 @default.
- W4297025672 cites W2110497788 @default.
- W4297025672 cites W2117684310 @default.
- W4297025672 cites W2121625970 @default.
- W4297025672 cites W2124299914 @default.
- W4297025672 cites W2128728535 @default.
- W4297025672 cites W2130662176 @default.
- W4297025672 cites W2132589721 @default.
- W4297025672 cites W2136567909 @default.
- W4297025672 cites W2144981335 @default.
- W4297025672 cites W2159254255 @default.
- W4297025672 cites W2169528473 @default.
- W4297025672 cites W2316113193 @default.
- W4297025672 cites W2336558992 @default.
- W4297025672 cites W2512614778 @default.
- W4297025672 cites W2551221546 @default.
- W4297025672 cites W2600217600 @default.
- W4297025672 cites W2605674843 @default.
- W4297025672 cites W2753746646 @default.
- W4297025672 cites W2760967781 @default.
- W4297025672 cites W2786827898 @default.
- W4297025672 cites W2802290512 @default.
- W4297025672 cites W2804933479 @default.
- W4297025672 cites W2809379298 @default.
- W4297025672 cites W2906453878 @default.
- W4297025672 cites W2974508040 @default.
- W4297025672 cites W3034506258 @default.
- W4297025672 cites W3037805412 @default.
- W4297025672 cites W3098321015 @default.
- W4297025672 cites W3100128886 @default.
- W4297025672 cites W3101706855 @default.
- W4297025672 cites W3102607728 @default.
- W4297025672 cites W3134649787 @default.
- W4297025672 cites W3159156584 @default.
- W4297025672 cites W3174309488 @default.
- W4297025672 cites W3197299565 @default.
- W4297025672 cites W4200257937 @default.
- W4297025672 doi "https://doi.org/10.1016/b978-0-323-90049-2.00013-5" @default.
- W4297025672 hasPublicationYear "2023" @default.
- W4297025672 type Work @default.
- W4297025672 citedByCount "0" @default.
- W4297025672 crossrefType "book-chapter" @default.
- W4297025672 hasAuthorship W4297025672A5057287134 @default.
- W4297025672 hasAuthorship W4297025672A5059175011 @default.
- W4297025672 hasAuthorship W4297025672A5060285813 @default.
- W4297025672 hasAuthorship W4297025672A5078336399 @default.
- W4297025672 hasConcept C111030470 @default.
- W4297025672 hasConcept C111472728 @default.
- W4297025672 hasConcept C121332964 @default.
- W4297025672 hasConcept C121864883 @default.
- W4297025672 hasConcept C132010649 @default.
- W4297025672 hasConcept C13662910 @default.
- W4297025672 hasConcept C138885662 @default.
- W4297025672 hasConcept C147597530 @default.
- W4297025672 hasConcept C154945302 @default.
- W4297025672 hasConcept C185592680 @default.
- W4297025672 hasConcept C41008148 @default.
- W4297025672 hasConcept C59593255 @default.
- W4297025672 hasConcept C62520636 @default.
- W4297025672 hasConcept C70518039 @default.
- W4297025672 hasConceptScore W4297025672C111030470 @default.
- W4297025672 hasConceptScore W4297025672C111472728 @default.
- W4297025672 hasConceptScore W4297025672C121332964 @default.
- W4297025672 hasConceptScore W4297025672C121864883 @default.
- W4297025672 hasConceptScore W4297025672C132010649 @default.
- W4297025672 hasConceptScore W4297025672C13662910 @default.
- W4297025672 hasConceptScore W4297025672C138885662 @default.
- W4297025672 hasConceptScore W4297025672C147597530 @default.