Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297053099> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4297053099 endingPage "11" @default.
- W4297053099 startingPage "1" @default.
- W4297053099 abstract "Pulse signal is one of the most important physiological features of human body, which is caused by the cyclical contraction and diastole. It has great research value and broad application prospect in the detection of physiological parameters, the development of medical equipment, and the study of cardiovascular diseases and pulse diagnosis objective. In recent years, with the development of the sensor, measuring and saving of pulse signal has become very convenient. Now the pulse signal feature analysis is a hotspot and difficulty in the signal processing field. Therefore, to realize pulse signal automatic analysis and recognition is vital significance in the aspects of the noninvasive diagnosis and remote monitoring, etc. In this article, we combined the pulse signal feature extraction in time and frequency domain and convolution neural network to analyze the pulse signal. Firstly, a theory of wavelet transform and the ensemble empirical mode decomposition (EEMD) which is gradually developed in recent years have been used to remove the noises in the pulse signal. Moreover, a method of feature point detection based on differential threshold method is proposed which realized the accurate positioning and extraction time-domain values. Finally, a deep learning method based on one-dimensional CNN has been utilized to make the classification of multiple pulse signals in the article. In conclusion, a deep learning method is proposed for the pulse signal classification combined with the feature extraction in time and frequency domain in this article." @default.
- W4297053099 created "2022-09-26" @default.
- W4297053099 creator A5006476476 @default.
- W4297053099 date "2022-09-15" @default.
- W4297053099 modified "2023-09-30" @default.
- W4297053099 title "Pulse Signal Analysis Based on Deep Learning Network" @default.
- W4297053099 cites W1976193075 @default.
- W4297053099 cites W2056120259 @default.
- W4297053099 cites W2066423735 @default.
- W4297053099 cites W2089737752 @default.
- W4297053099 cites W2095970154 @default.
- W4297053099 cites W2106665847 @default.
- W4297053099 cites W2122505858 @default.
- W4297053099 cites W2137825339 @default.
- W4297053099 cites W2343367305 @default.
- W4297053099 cites W2783989798 @default.
- W4297053099 cites W3010421324 @default.
- W4297053099 cites W3048886990 @default.
- W4297053099 cites W3088908879 @default.
- W4297053099 cites W3116671976 @default.
- W4297053099 cites W3132941258 @default.
- W4297053099 cites W3158117763 @default.
- W4297053099 cites W3175644580 @default.
- W4297053099 cites W4281853941 @default.
- W4297053099 doi "https://doi.org/10.1155/2022/6256126" @default.
- W4297053099 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36158878" @default.
- W4297053099 hasPublicationYear "2022" @default.
- W4297053099 type Work @default.
- W4297053099 citedByCount "0" @default.
- W4297053099 crossrefType "journal-article" @default.
- W4297053099 hasAuthorship W4297053099A5006476476 @default.
- W4297053099 hasBestOaLocation W42970530991 @default.
- W4297053099 hasConcept C103824480 @default.
- W4297053099 hasConcept C104267543 @default.
- W4297053099 hasConcept C112633086 @default.
- W4297053099 hasConcept C134652429 @default.
- W4297053099 hasConcept C138885662 @default.
- W4297053099 hasConcept C153180895 @default.
- W4297053099 hasConcept C154945302 @default.
- W4297053099 hasConcept C172321821 @default.
- W4297053099 hasConcept C19118579 @default.
- W4297053099 hasConcept C199360897 @default.
- W4297053099 hasConcept C25570617 @default.
- W4297053099 hasConcept C2776401178 @default.
- W4297053099 hasConcept C2779843651 @default.
- W4297053099 hasConcept C2780167933 @default.
- W4297053099 hasConcept C31972630 @default.
- W4297053099 hasConcept C41008148 @default.
- W4297053099 hasConcept C41895202 @default.
- W4297053099 hasConcept C45347329 @default.
- W4297053099 hasConcept C50644808 @default.
- W4297053099 hasConcept C52622490 @default.
- W4297053099 hasConcept C554190296 @default.
- W4297053099 hasConcept C76155785 @default.
- W4297053099 hasConcept C94915269 @default.
- W4297053099 hasConceptScore W4297053099C103824480 @default.
- W4297053099 hasConceptScore W4297053099C104267543 @default.
- W4297053099 hasConceptScore W4297053099C112633086 @default.
- W4297053099 hasConceptScore W4297053099C134652429 @default.
- W4297053099 hasConceptScore W4297053099C138885662 @default.
- W4297053099 hasConceptScore W4297053099C153180895 @default.
- W4297053099 hasConceptScore W4297053099C154945302 @default.
- W4297053099 hasConceptScore W4297053099C172321821 @default.
- W4297053099 hasConceptScore W4297053099C19118579 @default.
- W4297053099 hasConceptScore W4297053099C199360897 @default.
- W4297053099 hasConceptScore W4297053099C25570617 @default.
- W4297053099 hasConceptScore W4297053099C2776401178 @default.
- W4297053099 hasConceptScore W4297053099C2779843651 @default.
- W4297053099 hasConceptScore W4297053099C2780167933 @default.
- W4297053099 hasConceptScore W4297053099C31972630 @default.
- W4297053099 hasConceptScore W4297053099C41008148 @default.
- W4297053099 hasConceptScore W4297053099C41895202 @default.
- W4297053099 hasConceptScore W4297053099C45347329 @default.
- W4297053099 hasConceptScore W4297053099C50644808 @default.
- W4297053099 hasConceptScore W4297053099C52622490 @default.
- W4297053099 hasConceptScore W4297053099C554190296 @default.
- W4297053099 hasConceptScore W4297053099C76155785 @default.
- W4297053099 hasConceptScore W4297053099C94915269 @default.
- W4297053099 hasLocation W42970530991 @default.
- W4297053099 hasLocation W42970530992 @default.
- W4297053099 hasLocation W42970530993 @default.
- W4297053099 hasLocation W42970530994 @default.
- W4297053099 hasOpenAccess W4297053099 @default.
- W4297053099 hasPrimaryLocation W42970530991 @default.
- W4297053099 hasRelatedWork W1972714035 @default.
- W4297053099 hasRelatedWork W2546942002 @default.
- W4297053099 hasRelatedWork W2799644151 @default.
- W4297053099 hasRelatedWork W2965142555 @default.
- W4297053099 hasRelatedWork W3126234533 @default.
- W4297053099 hasRelatedWork W4205310665 @default.
- W4297053099 hasRelatedWork W4281678395 @default.
- W4297053099 hasRelatedWork W4318203471 @default.
- W4297053099 hasRelatedWork W4386303287 @default.
- W4297053099 hasRelatedWork W94648385 @default.
- W4297053099 hasVolume "2022" @default.
- W4297053099 isParatext "false" @default.
- W4297053099 isRetracted "false" @default.
- W4297053099 workType "article" @default.