Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297065619> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4297065619 endingPage "1324" @default.
- W4297065619 startingPage "1318" @default.
- W4297065619 abstract "Sinus CT is critically important for the diagnosis of chronic rhinosinusitis. While CT is sensitive for detecting mucosal disease, automated methods for objective quantification of sinus opacification are lacking. We describe new measurements and further clinical validation of automated CT analysis using a convolutional neural network in a chronic rhinosinusitis population. This technology produces volumetric segmentations that permit calculation of percentage sinus opacification, mean Hounsfield units of opacities, and percentage of osteitis.Demographic and clinical data were collected retrospectively from adult patients with chronic rhinosinusitis, including serum eosinophil count, Lund-Kennedy endoscopic scores, and the SinoNasal Outcomes Test-22. CT scans were scored using the Lund-Mackay score and the Global Osteitis Scoring Scale. CT images were automatically segmented and analyzed for percentage opacification, mean Hounsfield unit of opacities, and percentage osteitis. These readouts were correlated with visual scoring systems and with disease parameters using the Spearman ρ.Eighty-eight subjects were included. The algorithm successfully segmented 100% of scans and calculated features in a diverse population with CT images obtained on different scanners. A strong correlation existed between percentage opacification and the Lund-Mackay score (ρ = 0.85, P < .001). Both percentage opacification and the Lund-Mackay score exhibited moderate correlations with the Lund-Kennedy score (ρ = 0.58, P < .001, and ρ = 0.58, P < .001, respectively). The percentage osteitis correlated moderately with the Global Osteitis Scoring Scale (ρ = 0.48, P < .001).Our quantitative processing of sinus CT images provides objective measures that correspond well to established visual scoring methods. While automation is a clear benefit here, validation may be needed in a prospective, multi-institutional setting." @default.
- W4297065619 created "2022-09-26" @default.
- W4297065619 creator A5001724144 @default.
- W4297065619 creator A5032048682 @default.
- W4297065619 creator A5048091222 @default.
- W4297065619 creator A5074669560 @default.
- W4297065619 creator A5076234168 @default.
- W4297065619 date "2022-09-01" @default.
- W4297065619 modified "2023-10-18" @default.
- W4297065619 title "Clinical Validation and Extension of an Automated, Deep Learning–Based Algorithm for Quantitative Sinus CT Analysis" @default.
- W4297065619 cites W1496351691 @default.
- W4297065619 cites W149987944 @default.
- W4297065619 cites W1505472321 @default.
- W4297065619 cites W1562677435 @default.
- W4297065619 cites W1800644796 @default.
- W4297065619 cites W1899923597 @default.
- W4297065619 cites W1906687878 @default.
- W4297065619 cites W2003906494 @default.
- W4297065619 cites W2022178550 @default.
- W4297065619 cites W2039611168 @default.
- W4297065619 cites W2062624963 @default.
- W4297065619 cites W2080827782 @default.
- W4297065619 cites W2081997189 @default.
- W4297065619 cites W2099583662 @default.
- W4297065619 cites W2102066550 @default.
- W4297065619 cites W2126187248 @default.
- W4297065619 cites W2127412728 @default.
- W4297065619 cites W2149116105 @default.
- W4297065619 cites W2163072774 @default.
- W4297065619 cites W2767236661 @default.
- W4297065619 cites W2885642017 @default.
- W4297065619 cites W2947724179 @default.
- W4297065619 cites W2993259418 @default.
- W4297065619 cites W3004440726 @default.
- W4297065619 cites W3017372582 @default.
- W4297065619 cites W3110082941 @default.
- W4297065619 cites W4246147341 @default.
- W4297065619 cites W4292024189 @default.
- W4297065619 doi "https://doi.org/10.3174/ajnr.a7616" @default.
- W4297065619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36538385" @default.
- W4297065619 hasPublicationYear "2022" @default.
- W4297065619 type Work @default.
- W4297065619 citedByCount "2" @default.
- W4297065619 countsByYear W42970656192023 @default.
- W4297065619 crossrefType "journal-article" @default.
- W4297065619 hasAuthorship W4297065619A5001724144 @default.
- W4297065619 hasAuthorship W4297065619A5032048682 @default.
- W4297065619 hasAuthorship W4297065619A5048091222 @default.
- W4297065619 hasAuthorship W4297065619A5074669560 @default.
- W4297065619 hasAuthorship W4297065619A5076234168 @default.
- W4297065619 hasBestOaLocation W42970656191 @default.
- W4297065619 hasConcept C11413529 @default.
- W4297065619 hasConcept C126838900 @default.
- W4297065619 hasConcept C141071460 @default.
- W4297065619 hasConcept C187954543 @default.
- W4297065619 hasConcept C2777768476 @default.
- W4297065619 hasConcept C2780551157 @default.
- W4297065619 hasConcept C2781343496 @default.
- W4297065619 hasConcept C2908647359 @default.
- W4297065619 hasConcept C2989005 @default.
- W4297065619 hasConcept C41008148 @default.
- W4297065619 hasConcept C544519230 @default.
- W4297065619 hasConcept C71924100 @default.
- W4297065619 hasConcept C99454951 @default.
- W4297065619 hasConceptScore W4297065619C11413529 @default.
- W4297065619 hasConceptScore W4297065619C126838900 @default.
- W4297065619 hasConceptScore W4297065619C141071460 @default.
- W4297065619 hasConceptScore W4297065619C187954543 @default.
- W4297065619 hasConceptScore W4297065619C2777768476 @default.
- W4297065619 hasConceptScore W4297065619C2780551157 @default.
- W4297065619 hasConceptScore W4297065619C2781343496 @default.
- W4297065619 hasConceptScore W4297065619C2908647359 @default.
- W4297065619 hasConceptScore W4297065619C2989005 @default.
- W4297065619 hasConceptScore W4297065619C41008148 @default.
- W4297065619 hasConceptScore W4297065619C544519230 @default.
- W4297065619 hasConceptScore W4297065619C71924100 @default.
- W4297065619 hasConceptScore W4297065619C99454951 @default.
- W4297065619 hasFunder F4320308299 @default.
- W4297065619 hasFunder F4320337352 @default.
- W4297065619 hasIssue "9" @default.
- W4297065619 hasLocation W42970656191 @default.
- W4297065619 hasLocation W42970656192 @default.
- W4297065619 hasOpenAccess W4297065619 @default.
- W4297065619 hasPrimaryLocation W42970656191 @default.
- W4297065619 hasRelatedWork W1519323101 @default.
- W4297065619 hasRelatedWork W2015676000 @default.
- W4297065619 hasRelatedWork W2024917033 @default.
- W4297065619 hasRelatedWork W2123484233 @default.
- W4297065619 hasRelatedWork W2211719921 @default.
- W4297065619 hasRelatedWork W2352748590 @default.
- W4297065619 hasRelatedWork W2764299427 @default.
- W4297065619 hasRelatedWork W2963012573 @default.
- W4297065619 hasRelatedWork W4239075073 @default.
- W4297065619 hasRelatedWork W4245745103 @default.
- W4297065619 hasVolume "43" @default.
- W4297065619 isParatext "false" @default.
- W4297065619 isRetracted "false" @default.
- W4297065619 workType "article" @default.