Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297094920> ?p ?o ?g. }
- W4297094920 endingPage "8566" @default.
- W4297094920 startingPage "8552" @default.
- W4297094920 abstract "Smoke is more observable than open fires. Optical satellite video has the advantages of a wide monitoring range, fast response speed, and good economy in large-scale surface smoke monitoring tasks. It can be used in wide-area forest wildfire monitoring, battlefield dynamic monitoring, disaster relief decision-making. The smoke segmentation method based on traditional handcrafted features is easily limited by the scene and data. This paper introduces the deep learning method to the optical satellite video smoke target segmentation. However, due to the lack of real smoke images and the blurred edges of smoke, there are currently few labeled datasets for smoke segmentation in high-resolution optical satellite imagery scenes, which cannot provide sufficient training data for deep learning models. The smoke image from the satellite perspective also has the characteristics of multi-scale features and ground object background interference. To solve the above problems, we construct a set of high-resolution optical satellite imagery smoke synthesis datasets based on the optical imaging process of smoke targets, which saves the cost of manual labeling. In addition, we design an attention-guided optical satellite video smoke segmentation network model (AOSVSSNet), which can effectively suppress the ground object background's false alarm and extract the smoke's multi-scale features. Synthetic data faces the transferability problem in real-world applications, so the physical constraints of the smoke imaging process are introduced into the loss function to improve the generalization of the model in real smoke data. The comprehensive evaluation results show that the method outperforms representative semantic segmentation networks." @default.
- W4297094920 created "2022-09-27" @default.
- W4297094920 creator A5004076498 @default.
- W4297094920 creator A5007537636 @default.
- W4297094920 creator A5029635562 @default.
- W4297094920 creator A5044435891 @default.
- W4297094920 creator A5058782294 @default.
- W4297094920 creator A5066746505 @default.
- W4297094920 creator A5066997693 @default.
- W4297094920 creator A5076067494 @default.
- W4297094920 date "2022-01-01" @default.
- W4297094920 modified "2023-09-25" @default.
- W4297094920 title "AOSVSSNet: Attention-Guided Optical Satellite Video Smoke Segmentation Network" @default.
- W4297094920 cites W13394487 @default.
- W4297094920 cites W1903029394 @default.
- W4297094920 cites W2018229212 @default.
- W4297094920 cites W2090748520 @default.
- W4297094920 cites W2103613239 @default.
- W4297094920 cites W2122572959 @default.
- W4297094920 cites W2256362396 @default.
- W4297094920 cites W2301346208 @default.
- W4297094920 cites W2344001629 @default.
- W4297094920 cites W2412782625 @default.
- W4297094920 cites W2560023338 @default.
- W4297094920 cites W2566030665 @default.
- W4297094920 cites W2572703977 @default.
- W4297094920 cites W2593226270 @default.
- W4297094920 cites W2604469346 @default.
- W4297094920 cites W2608475714 @default.
- W4297094920 cites W2610147486 @default.
- W4297094920 cites W2673629478 @default.
- W4297094920 cites W2751420734 @default.
- W4297094920 cites W2761302114 @default.
- W4297094920 cites W2884436604 @default.
- W4297094920 cites W2892068485 @default.
- W4297094920 cites W2895340898 @default.
- W4297094920 cites W2906161342 @default.
- W4297094920 cites W2907574584 @default.
- W4297094920 cites W2952565170 @default.
- W4297094920 cites W2955058313 @default.
- W4297094920 cites W2963155258 @default.
- W4297094920 cites W2963163009 @default.
- W4297094920 cites W2963881378 @default.
- W4297094920 cites W2964169840 @default.
- W4297094920 cites W2980092754 @default.
- W4297094920 cites W2980784832 @default.
- W4297094920 cites W2981689412 @default.
- W4297094920 cites W2987391422 @default.
- W4297094920 cites W3047443805 @default.
- W4297094920 cites W3048631361 @default.
- W4297094920 cites W3101012758 @default.
- W4297094920 cites W3102405604 @default.
- W4297094920 cites W3103294617 @default.
- W4297094920 cites W3105270602 @default.
- W4297094920 cites W3142500263 @default.
- W4297094920 cites W3164229442 @default.
- W4297094920 cites W3168367808 @default.
- W4297094920 cites W3209540366 @default.
- W4297094920 cites W3214821343 @default.
- W4297094920 cites W4200519212 @default.
- W4297094920 cites W4212908285 @default.
- W4297094920 cites W4214535086 @default.
- W4297094920 cites W4214881742 @default.
- W4297094920 cites W4229367296 @default.
- W4297094920 cites W4282929851 @default.
- W4297094920 cites W646984897 @default.
- W4297094920 doi "https://doi.org/10.1109/jstars.2022.3209541" @default.
- W4297094920 hasPublicationYear "2022" @default.
- W4297094920 type Work @default.
- W4297094920 citedByCount "4" @default.
- W4297094920 countsByYear W42970949202022 @default.
- W4297094920 countsByYear W42970949202023 @default.
- W4297094920 crossrefType "journal-article" @default.
- W4297094920 hasAuthorship W4297094920A5004076498 @default.
- W4297094920 hasAuthorship W4297094920A5007537636 @default.
- W4297094920 hasAuthorship W4297094920A5029635562 @default.
- W4297094920 hasAuthorship W4297094920A5044435891 @default.
- W4297094920 hasAuthorship W4297094920A5058782294 @default.
- W4297094920 hasAuthorship W4297094920A5066746505 @default.
- W4297094920 hasAuthorship W4297094920A5066997693 @default.
- W4297094920 hasAuthorship W4297094920A5076067494 @default.
- W4297094920 hasBestOaLocation W42970949201 @default.
- W4297094920 hasConcept C108583219 @default.
- W4297094920 hasConcept C121332964 @default.
- W4297094920 hasConcept C124504099 @default.
- W4297094920 hasConcept C127313418 @default.
- W4297094920 hasConcept C127413603 @default.
- W4297094920 hasConcept C146978453 @default.
- W4297094920 hasConcept C153294291 @default.
- W4297094920 hasConcept C154945302 @default.
- W4297094920 hasConcept C19269812 @default.
- W4297094920 hasConcept C205372480 @default.
- W4297094920 hasConcept C2776151529 @default.
- W4297094920 hasConcept C2778102629 @default.
- W4297094920 hasConcept C31972630 @default.
- W4297094920 hasConcept C41008148 @default.
- W4297094920 hasConcept C58874564 @default.
- W4297094920 hasConcept C62649853 @default.