Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297098342> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4297098342 abstract "The fields of Natural Language Processing (NLP), Computer vision and speech processing witnessed great breakthroughs caused by the continuous advances in Deep Learning (DL). The implementation of DL techniques in Online Social Networking and Sentiment Analysis have proved to provide a state-of-the-art result in these areas. In this research, we survey the papers that claims to use the DL methods in NLP. We focus on the research that is related to the Arabic language due to the scares resources in Arabic NLP. We concluded that most of the early research in Arabic NLP focusses of OCR-Digitization and most recently is focusing on applying DL methods in Sentiment Analysis, diacrization and machine translation. We present this survey to provide the growing community of researchers in ANLP in the hope of bridging the gap between the ANLP and the English NLP." @default.
- W4297098342 created "2022-09-27" @default.
- W4297098342 creator A5042676126 @default.
- W4297098342 creator A5058946854 @default.
- W4297098342 creator A5065680744 @default.
- W4297098342 creator A5068523344 @default.
- W4297098342 date "2022-06-22" @default.
- W4297098342 modified "2023-09-27" @default.
- W4297098342 title "A Review Study for Arabic Machine Learning and Deep Learning Methods" @default.
- W4297098342 cites W2047308542 @default.
- W4297098342 cites W2063781986 @default.
- W4297098342 cites W2096866608 @default.
- W4297098342 cites W2251137535 @default.
- W4297098342 cites W2258458006 @default.
- W4297098342 cites W2332951940 @default.
- W4297098342 cites W2588176795 @default.
- W4297098342 cites W2621199241 @default.
- W4297098342 cites W2731217304 @default.
- W4297098342 cites W2753540975 @default.
- W4297098342 cites W2765947769 @default.
- W4297098342 cites W2787566989 @default.
- W4297098342 cites W2909182718 @default.
- W4297098342 cites W2941584439 @default.
- W4297098342 cites W2944780533 @default.
- W4297098342 cites W2946009575 @default.
- W4297098342 cites W2995181833 @default.
- W4297098342 cites W2999061234 @default.
- W4297098342 cites W3083272626 @default.
- W4297098342 cites W3105772961 @default.
- W4297098342 cites W861654703 @default.
- W4297098342 doi "https://doi.org/10.1109/icetsis55481.2022.9888948" @default.
- W4297098342 hasPublicationYear "2022" @default.
- W4297098342 type Work @default.
- W4297098342 citedByCount "0" @default.
- W4297098342 crossrefType "proceedings-article" @default.
- W4297098342 hasAuthorship W4297098342A5042676126 @default.
- W4297098342 hasAuthorship W4297098342A5058946854 @default.
- W4297098342 hasAuthorship W4297098342A5065680744 @default.
- W4297098342 hasAuthorship W4297098342A5068523344 @default.
- W4297098342 hasConcept C108583219 @default.
- W4297098342 hasConcept C120665830 @default.
- W4297098342 hasConcept C121332964 @default.
- W4297098342 hasConcept C138885662 @default.
- W4297098342 hasConcept C154945302 @default.
- W4297098342 hasConcept C174348530 @default.
- W4297098342 hasConcept C192209626 @default.
- W4297098342 hasConcept C203005215 @default.
- W4297098342 hasConcept C204321447 @default.
- W4297098342 hasConcept C2779308522 @default.
- W4297098342 hasConcept C31258907 @default.
- W4297098342 hasConcept C31972630 @default.
- W4297098342 hasConcept C41008148 @default.
- W4297098342 hasConcept C41895202 @default.
- W4297098342 hasConcept C66402592 @default.
- W4297098342 hasConcept C96455323 @default.
- W4297098342 hasConceptScore W4297098342C108583219 @default.
- W4297098342 hasConceptScore W4297098342C120665830 @default.
- W4297098342 hasConceptScore W4297098342C121332964 @default.
- W4297098342 hasConceptScore W4297098342C138885662 @default.
- W4297098342 hasConceptScore W4297098342C154945302 @default.
- W4297098342 hasConceptScore W4297098342C174348530 @default.
- W4297098342 hasConceptScore W4297098342C192209626 @default.
- W4297098342 hasConceptScore W4297098342C203005215 @default.
- W4297098342 hasConceptScore W4297098342C204321447 @default.
- W4297098342 hasConceptScore W4297098342C2779308522 @default.
- W4297098342 hasConceptScore W4297098342C31258907 @default.
- W4297098342 hasConceptScore W4297098342C31972630 @default.
- W4297098342 hasConceptScore W4297098342C41008148 @default.
- W4297098342 hasConceptScore W4297098342C41895202 @default.
- W4297098342 hasConceptScore W4297098342C66402592 @default.
- W4297098342 hasConceptScore W4297098342C96455323 @default.
- W4297098342 hasLocation W42970983421 @default.
- W4297098342 hasOpenAccess W4297098342 @default.
- W4297098342 hasPrimaryLocation W42970983421 @default.
- W4297098342 hasRelatedWork W1585034923 @default.
- W4297098342 hasRelatedWork W2104937263 @default.
- W4297098342 hasRelatedWork W2140563376 @default.
- W4297098342 hasRelatedWork W2435130738 @default.
- W4297098342 hasRelatedWork W2916492174 @default.
- W4297098342 hasRelatedWork W2953332970 @default.
- W4297098342 hasRelatedWork W3105168542 @default.
- W4297098342 hasRelatedWork W3107474891 @default.
- W4297098342 hasRelatedWork W4297098342 @default.
- W4297098342 hasRelatedWork W4312833533 @default.
- W4297098342 isParatext "false" @default.
- W4297098342 isRetracted "false" @default.
- W4297098342 workType "article" @default.