Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297102742> ?p ?o ?g. }
- W4297102742 endingPage "13" @default.
- W4297102742 startingPage "1" @default.
- W4297102742 abstract "The human-computer interaction has become inevitable in digital world. HCI helps humans to incorporate technology to resolve even their day-to-day problems. The main objective of the paper is to utilize HCI in Intelligent Transportation Systems. In India, the most common and convenient mode of transportation is the buses. Every state government provides the bus transportation facility to all routes at an affordable cost. The main difficulty faced by the passengers (humans) is lack of information about bus numbers available for the particular route and Estimated Time of Arrival (ETA) of the buses. There may be different reasons for the bus delay. These include heavy traffic, breakdowns, and bad weather conditions. The passengers waiting in the bus stops are neither aware of the delay nor the bus arrival time. These issues can be resolved by providing an HCI-based web/mobile application for the passengers to track their bus locations in real time. They can also check the Estimated Time of Arrival (ETA) of a particular bus, calculated using machine learning techniques by considering the impacts of environmental dynamics, and other factors like traffic density and weather conditions and track their bus locations in real time. This can be achieved by developing a real-time bus management system for the benefit of passengers, bus drivers, and bus managers. This system can effectively address the problems related to bus timing transparency and arrival time forecasting. The buses are equipped with real-time vehicle tracking module containing Raspberry Pi, GPS, and GSM. The traffic density in the current location of the bus and weather data are some of the factors used for the ETA prediction using the Support Vector Regression algorithm. The model showed RMSE of 27 seconds when tested. The model is performing well when compared with other models." @default.
- W4297102742 created "2022-09-27" @default.
- W4297102742 creator A5007151387 @default.
- W4297102742 creator A5038918479 @default.
- W4297102742 creator A5047398612 @default.
- W4297102742 creator A5066276015 @default.
- W4297102742 creator A5071618702 @default.
- W4297102742 creator A5087511527 @default.
- W4297102742 date "2022-09-26" @default.
- W4297102742 modified "2023-10-05" @default.
- W4297102742 title "Analysis on the Bus Arrival Time Prediction Model for Human-Centric Services Using Data Mining Techniques" @default.
- W4297102742 cites W2054188095 @default.
- W4297102742 cites W2098263691 @default.
- W4297102742 cites W2623444497 @default.
- W4297102742 cites W2895617573 @default.
- W4297102742 cites W2903589439 @default.
- W4297102742 cites W2943055507 @default.
- W4297102742 cites W2963657738 @default.
- W4297102742 cites W2990456231 @default.
- W4297102742 cites W3006129875 @default.
- W4297102742 cites W3007692608 @default.
- W4297102742 cites W3022409317 @default.
- W4297102742 cites W3048800837 @default.
- W4297102742 cites W3081899694 @default.
- W4297102742 cites W3201012604 @default.
- W4297102742 cites W3216438746 @default.
- W4297102742 cites W3216598934 @default.
- W4297102742 cites W4205121663 @default.
- W4297102742 cites W4205286101 @default.
- W4297102742 cites W4207046224 @default.
- W4297102742 cites W4210417514 @default.
- W4297102742 cites W4213071512 @default.
- W4297102742 cites W4214694996 @default.
- W4297102742 cites W4235115525 @default.
- W4297102742 cites W4252604563 @default.
- W4297102742 cites W4254120981 @default.
- W4297102742 cites W655895022 @default.
- W4297102742 doi "https://doi.org/10.1155/2022/7094654" @default.
- W4297102742 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36199964" @default.
- W4297102742 hasPublicationYear "2022" @default.
- W4297102742 type Work @default.
- W4297102742 citedByCount "1" @default.
- W4297102742 countsByYear W42971027422023 @default.
- W4297102742 crossrefType "journal-article" @default.
- W4297102742 hasAuthorship W4297102742A5007151387 @default.
- W4297102742 hasAuthorship W4297102742A5038918479 @default.
- W4297102742 hasAuthorship W4297102742A5047398612 @default.
- W4297102742 hasAuthorship W4297102742A5066276015 @default.
- W4297102742 hasAuthorship W4297102742A5071618702 @default.
- W4297102742 hasAuthorship W4297102742A5087511527 @default.
- W4297102742 hasBestOaLocation W42971027421 @default.
- W4297102742 hasConcept C110593043 @default.
- W4297102742 hasConcept C111919701 @default.
- W4297102742 hasConcept C11413529 @default.
- W4297102742 hasConcept C127413603 @default.
- W4297102742 hasConcept C136764020 @default.
- W4297102742 hasConcept C202176563 @default.
- W4297102742 hasConcept C22212356 @default.
- W4297102742 hasConcept C3017552255 @default.
- W4297102742 hasConcept C41008148 @default.
- W4297102742 hasConcept C48103436 @default.
- W4297102742 hasConcept C59201141 @default.
- W4297102742 hasConcept C60229501 @default.
- W4297102742 hasConcept C76155785 @default.
- W4297102742 hasConcept C79403827 @default.
- W4297102742 hasConcept C89992363 @default.
- W4297102742 hasConceptScore W4297102742C110593043 @default.
- W4297102742 hasConceptScore W4297102742C111919701 @default.
- W4297102742 hasConceptScore W4297102742C11413529 @default.
- W4297102742 hasConceptScore W4297102742C127413603 @default.
- W4297102742 hasConceptScore W4297102742C136764020 @default.
- W4297102742 hasConceptScore W4297102742C202176563 @default.
- W4297102742 hasConceptScore W4297102742C22212356 @default.
- W4297102742 hasConceptScore W4297102742C3017552255 @default.
- W4297102742 hasConceptScore W4297102742C41008148 @default.
- W4297102742 hasConceptScore W4297102742C48103436 @default.
- W4297102742 hasConceptScore W4297102742C59201141 @default.
- W4297102742 hasConceptScore W4297102742C60229501 @default.
- W4297102742 hasConceptScore W4297102742C76155785 @default.
- W4297102742 hasConceptScore W4297102742C79403827 @default.
- W4297102742 hasConceptScore W4297102742C89992363 @default.
- W4297102742 hasLocation W42971027421 @default.
- W4297102742 hasLocation W42971027422 @default.
- W4297102742 hasLocation W42971027423 @default.
- W4297102742 hasOpenAccess W4297102742 @default.
- W4297102742 hasPrimaryLocation W42971027421 @default.
- W4297102742 hasRelatedWork W2363262238 @default.
- W4297102742 hasRelatedWork W2928937902 @default.
- W4297102742 hasRelatedWork W3149198594 @default.
- W4297102742 hasRelatedWork W3160297422 @default.
- W4297102742 hasRelatedWork W3160711186 @default.
- W4297102742 hasRelatedWork W3176389629 @default.
- W4297102742 hasRelatedWork W4377842829 @default.
- W4297102742 hasRelatedWork W1503654505 @default.
- W4297102742 hasRelatedWork W2114295433 @default.
- W4297102742 hasRelatedWork W2341150210 @default.
- W4297102742 hasVolume "2022" @default.
- W4297102742 isParatext "false" @default.