Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297141303> ?p ?o ?g. }
- W4297141303 endingPage "107906" @default.
- W4297141303 startingPage "107906" @default.
- W4297141303 abstract "This paper studies the free vibration behavior and dynamic responses of functionally graded (FG) beams made of novel graphene origami (GOri)-enabled auxetic metal metamaterials (GOEAMs) under an impulsive load within the framework of the first-order shear deformation beam theory. The auxetic property of the beam is effectively controlled by graphene content and GOri folding degree that are graded across the thickness direction of the beams in a layer-wise manner such that Poisson's ratio and other material properties are position-dependent and are estimated by the genetic programming (GP)-assisted micromechanical models. The governing equations are derived by using Lagrange equation approach together with Ritz method. Newmark-β method is employed to solve the governing equations for obtaining dynamic responses of the beams subjected to three different impulsive loads. A comprehensive parametric study is performed to examine the effects of graphene content, GOri folding degree and distribution patterns as well as temperature on the natural frequencies and dynamic responses of the beams. Numerical results show that high tunability in structural vibration characteristics can be achieved via GOri, which offers important insight into the application of FG-GOEAM beams in aerospace engineering structure for significantly improved dynamic structural performance." @default.
- W4297141303 created "2022-09-27" @default.
- W4297141303 creator A5040577889 @default.
- W4297141303 creator A5054832422 @default.
- W4297141303 creator A5057931088 @default.
- W4297141303 creator A5077269879 @default.
- W4297141303 creator A5081840502 @default.
- W4297141303 date "2022-11-01" @default.
- W4297141303 modified "2023-10-06" @default.
- W4297141303 title "Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models" @default.
- W4297141303 cites W1963795104 @default.
- W4297141303 cites W2017029836 @default.
- W4297141303 cites W2078162752 @default.
- W4297141303 cites W2104747054 @default.
- W4297141303 cites W2153074439 @default.
- W4297141303 cites W2270525418 @default.
- W4297141303 cites W2520994592 @default.
- W4297141303 cites W2523927854 @default.
- W4297141303 cites W2536260093 @default.
- W4297141303 cites W2550105063 @default.
- W4297141303 cites W2553260874 @default.
- W4297141303 cites W2565205249 @default.
- W4297141303 cites W2587546295 @default.
- W4297141303 cites W2592900294 @default.
- W4297141303 cites W2610471325 @default.
- W4297141303 cites W2736441330 @default.
- W4297141303 cites W2754068479 @default.
- W4297141303 cites W2765647483 @default.
- W4297141303 cites W2765802355 @default.
- W4297141303 cites W2774031690 @default.
- W4297141303 cites W2783713542 @default.
- W4297141303 cites W2790412646 @default.
- W4297141303 cites W2794237699 @default.
- W4297141303 cites W2797788649 @default.
- W4297141303 cites W2861993728 @default.
- W4297141303 cites W2883492585 @default.
- W4297141303 cites W2886004136 @default.
- W4297141303 cites W2890295826 @default.
- W4297141303 cites W2899734069 @default.
- W4297141303 cites W2899820479 @default.
- W4297141303 cites W2900996220 @default.
- W4297141303 cites W2905498323 @default.
- W4297141303 cites W2933876341 @default.
- W4297141303 cites W2953210900 @default.
- W4297141303 cites W2992034337 @default.
- W4297141303 cites W3001123483 @default.
- W4297141303 cites W3001467498 @default.
- W4297141303 cites W3008825133 @default.
- W4297141303 cites W3103252578 @default.
- W4297141303 cites W3108634479 @default.
- W4297141303 cites W3124455810 @default.
- W4297141303 cites W3127778791 @default.
- W4297141303 cites W3138250062 @default.
- W4297141303 cites W3167998087 @default.
- W4297141303 cites W3200743110 @default.
- W4297141303 cites W3209331676 @default.
- W4297141303 cites W3210712168 @default.
- W4297141303 cites W3211326071 @default.
- W4297141303 cites W4205528348 @default.
- W4297141303 cites W4205799445 @default.
- W4297141303 cites W4206915510 @default.
- W4297141303 cites W4213077346 @default.
- W4297141303 cites W4213417098 @default.
- W4297141303 cites W4221100581 @default.
- W4297141303 cites W4281737753 @default.
- W4297141303 doi "https://doi.org/10.1016/j.ast.2022.107906" @default.
- W4297141303 hasPublicationYear "2022" @default.
- W4297141303 type Work @default.
- W4297141303 citedByCount "13" @default.
- W4297141303 countsByYear W42971413032023 @default.
- W4297141303 crossrefType "journal-article" @default.
- W4297141303 hasAuthorship W4297141303A5040577889 @default.
- W4297141303 hasAuthorship W4297141303A5054832422 @default.
- W4297141303 hasAuthorship W4297141303A5057931088 @default.
- W4297141303 hasAuthorship W4297141303A5077269879 @default.
- W4297141303 hasAuthorship W4297141303A5081840502 @default.
- W4297141303 hasConcept C105795698 @default.
- W4297141303 hasConcept C110367647 @default.
- W4297141303 hasConcept C114614502 @default.
- W4297141303 hasConcept C117251300 @default.
- W4297141303 hasConcept C121332964 @default.
- W4297141303 hasConcept C127413603 @default.
- W4297141303 hasConcept C14037181 @default.
- W4297141303 hasConcept C159985019 @default.
- W4297141303 hasConcept C168834538 @default.
- W4297141303 hasConcept C171250308 @default.
- W4297141303 hasConcept C184720557 @default.
- W4297141303 hasConcept C192562407 @default.
- W4297141303 hasConcept C198394728 @default.
- W4297141303 hasConcept C24890656 @default.
- W4297141303 hasConcept C30080830 @default.
- W4297141303 hasConcept C33923547 @default.
- W4297141303 hasConcept C49040817 @default.
- W4297141303 hasConcept C64904818 @default.
- W4297141303 hasConcept C66938386 @default.
- W4297141303 hasConcept C74650414 @default.
- W4297141303 hasConceptScore W4297141303C105795698 @default.
- W4297141303 hasConceptScore W4297141303C110367647 @default.