Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297147007> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4297147007 endingPage "9606" @default.
- W4297147007 startingPage "9606" @default.
- W4297147007 abstract "A convolutional neural network (CNN) is a representative deep-learning algorithm that has a significant advantage in image recognition and classification. Using anteroposterior pelvic radiographs as input data, we developed a CNN algorithm to determine the presence of pre-collapse osteonecrosis of the femoral head (ONFH). We developed a CNN algorithm to differentiate between ONFH and normal radiographs. We retrospectively included 305 anteroposterior pelvic radiographs (right hip: pre-collapsed ONFH = 79, normal = 226; left hip: pre-collapsed ONFH = 62, normal = 243) as data samples. Pre-collapsed ONFH was diagnosed using pelvic magnetic resonance imaging data for each patient. Among the 305 cases, 69.8% of the included data samples were randomly selected as the training set, 21.0% were selected as the validation set, and the remaining 9.2% were selected as the test set to evaluate the performance of the developed CNN algorithm. The area under the curve of our developed CNN algorithm on the test data was 0.912 (95% confidence interval, 0.773–1.000) for the right hip and 0.902 (95% confidence interval, 0.747–1.000) for the left hip. We showed that a CNN algorithm trained using pelvic radiographs would help diagnose pre-collapse ONFH." @default.
- W4297147007 created "2022-09-27" @default.
- W4297147007 creator A5032243567 @default.
- W4297147007 creator A5032349144 @default.
- W4297147007 creator A5040936873 @default.
- W4297147007 creator A5087383331 @default.
- W4297147007 date "2022-09-24" @default.
- W4297147007 modified "2023-10-14" @default.
- W4297147007 title "Convolutional Neural Network Algorithm Trained with Anteroposterior Radiographs to Diagnose Pre-Collapse Osteonecrosis of the Femoral Head" @default.
- W4297147007 cites W1848626549 @default.
- W4297147007 cites W1913344205 @default.
- W4297147007 cites W1980276147 @default.
- W4297147007 cites W2328176404 @default.
- W4297147007 cites W2531409750 @default.
- W4297147007 cites W2664267452 @default.
- W4297147007 cites W2809254203 @default.
- W4297147007 cites W2898036868 @default.
- W4297147007 cites W2922201903 @default.
- W4297147007 cites W2925189575 @default.
- W4297147007 cites W2999292999 @default.
- W4297147007 cites W3004368638 @default.
- W4297147007 cites W3080406710 @default.
- W4297147007 cites W3098503493 @default.
- W4297147007 cites W3105282616 @default.
- W4297147007 cites W3156147310 @default.
- W4297147007 cites W3167729391 @default.
- W4297147007 cites W4205825082 @default.
- W4297147007 cites W4220932203 @default.
- W4297147007 cites W4220966852 @default.
- W4297147007 cites W4221026468 @default.
- W4297147007 cites W4221066321 @default.
- W4297147007 doi "https://doi.org/10.3390/app12199606" @default.
- W4297147007 hasPublicationYear "2022" @default.
- W4297147007 type Work @default.
- W4297147007 citedByCount "1" @default.
- W4297147007 countsByYear W42971470072023 @default.
- W4297147007 crossrefType "journal-article" @default.
- W4297147007 hasAuthorship W4297147007A5032243567 @default.
- W4297147007 hasAuthorship W4297147007A5032349144 @default.
- W4297147007 hasAuthorship W4297147007A5040936873 @default.
- W4297147007 hasAuthorship W4297147007A5087383331 @default.
- W4297147007 hasBestOaLocation W42971470071 @default.
- W4297147007 hasConcept C11413529 @default.
- W4297147007 hasConcept C126322002 @default.
- W4297147007 hasConcept C126838900 @default.
- W4297147007 hasConcept C141071460 @default.
- W4297147007 hasConcept C143409427 @default.
- W4297147007 hasConcept C154945302 @default.
- W4297147007 hasConcept C2779100257 @default.
- W4297147007 hasConcept C36454342 @default.
- W4297147007 hasConcept C41008148 @default.
- W4297147007 hasConcept C44249647 @default.
- W4297147007 hasConcept C58489278 @default.
- W4297147007 hasConcept C71924100 @default.
- W4297147007 hasConcept C81363708 @default.
- W4297147007 hasConceptScore W4297147007C11413529 @default.
- W4297147007 hasConceptScore W4297147007C126322002 @default.
- W4297147007 hasConceptScore W4297147007C126838900 @default.
- W4297147007 hasConceptScore W4297147007C141071460 @default.
- W4297147007 hasConceptScore W4297147007C143409427 @default.
- W4297147007 hasConceptScore W4297147007C154945302 @default.
- W4297147007 hasConceptScore W4297147007C2779100257 @default.
- W4297147007 hasConceptScore W4297147007C36454342 @default.
- W4297147007 hasConceptScore W4297147007C41008148 @default.
- W4297147007 hasConceptScore W4297147007C44249647 @default.
- W4297147007 hasConceptScore W4297147007C58489278 @default.
- W4297147007 hasConceptScore W4297147007C71924100 @default.
- W4297147007 hasConceptScore W4297147007C81363708 @default.
- W4297147007 hasIssue "19" @default.
- W4297147007 hasLocation W42971470071 @default.
- W4297147007 hasLocation W42971470072 @default.
- W4297147007 hasOpenAccess W4297147007 @default.
- W4297147007 hasPrimaryLocation W42971470071 @default.
- W4297147007 hasRelatedWork W1568701304 @default.
- W4297147007 hasRelatedWork W1969362407 @default.
- W4297147007 hasRelatedWork W1990741171 @default.
- W4297147007 hasRelatedWork W2050511753 @default.
- W4297147007 hasRelatedWork W2087291171 @default.
- W4297147007 hasRelatedWork W245590719 @default.
- W4297147007 hasRelatedWork W2922074762 @default.
- W4297147007 hasRelatedWork W4250549352 @default.
- W4297147007 hasRelatedWork W4320800914 @default.
- W4297147007 hasRelatedWork W3115566378 @default.
- W4297147007 hasVolume "12" @default.
- W4297147007 isParatext "false" @default.
- W4297147007 isRetracted "false" @default.
- W4297147007 workType "article" @default.