Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297154385> ?p ?o ?g. }
- W4297154385 abstract "As one of the most common neurological disorders, epilepsy causes great physical and psychological damage to the patients. The long-term recurrent and unprovoked seizures make the prediction necessary. In this paper, a novel approach for epileptic seizure prediction based on successive variational mode decomposition (SVMD) and transformers is proposed. SVMD is extended to multidimensional form for time-frequency analysis of multi-channel signals. It could adaptively extract common band-limited intrinsic modes among all channels on different time scales by solving a variational optimization problem. In the proposed seizure prediction method, data are first decomposed into multiple modes on different time scales by multivariate SVMD, and then, irrelevant modes are removed for preprocessing. Finally, power spectrum of denoised data is input to a pre-trained bidirectional encoder representations from transformers (BERTs) for prediction. The BERT could identify the mode information related to epileptic seizures in time-frequency domain. It shows fair prediction performance on an intracranial EEG dataset with the average sensitivity of 0.86 and FPR of 0.18/h." @default.
- W4297154385 created "2022-09-27" @default.
- W4297154385 creator A5006333473 @default.
- W4297154385 creator A5060413120 @default.
- W4297154385 creator A5080143961 @default.
- W4297154385 creator A5091411849 @default.
- W4297154385 date "2022-09-26" @default.
- W4297154385 modified "2023-10-14" @default.
- W4297154385 title "Epileptic seizure prediction using successive variational mode decomposition and transformers deep learning network" @default.
- W4297154385 cites W1554103259 @default.
- W4297154385 cites W1972642748 @default.
- W4297154385 cites W2000982976 @default.
- W4297154385 cites W2036801659 @default.
- W4297154385 cites W2062895901 @default.
- W4297154385 cites W2063682302 @default.
- W4297154385 cites W2071315233 @default.
- W4297154385 cites W2088222765 @default.
- W4297154385 cites W2110661716 @default.
- W4297154385 cites W2119705365 @default.
- W4297154385 cites W2126030941 @default.
- W4297154385 cites W2169812774 @default.
- W4297154385 cites W2317674142 @default.
- W4297154385 cites W2322780580 @default.
- W4297154385 cites W2524052612 @default.
- W4297154385 cites W2586456943 @default.
- W4297154385 cites W2589138705 @default.
- W4297154385 cites W2604287166 @default.
- W4297154385 cites W2605817454 @default.
- W4297154385 cites W2613972249 @default.
- W4297154385 cites W2728209061 @default.
- W4297154385 cites W2744000381 @default.
- W4297154385 cites W2753590421 @default.
- W4297154385 cites W2756285295 @default.
- W4297154385 cites W2799610518 @default.
- W4297154385 cites W2804824909 @default.
- W4297154385 cites W2892870261 @default.
- W4297154385 cites W2919647374 @default.
- W4297154385 cites W2937349975 @default.
- W4297154385 cites W2942223156 @default.
- W4297154385 cites W2967087414 @default.
- W4297154385 cites W2969254781 @default.
- W4297154385 cites W2982383103 @default.
- W4297154385 cites W2992736482 @default.
- W4297154385 cites W2995435729 @default.
- W4297154385 cites W3020865293 @default.
- W4297154385 cites W3023283343 @default.
- W4297154385 cites W3043250973 @default.
- W4297154385 cites W3080253073 @default.
- W4297154385 cites W3111573465 @default.
- W4297154385 cites W3124130360 @default.
- W4297154385 cites W4248307879 @default.
- W4297154385 doi "https://doi.org/10.3389/fnins.2022.982541" @default.
- W4297154385 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36225738" @default.
- W4297154385 hasPublicationYear "2022" @default.
- W4297154385 type Work @default.
- W4297154385 citedByCount "3" @default.
- W4297154385 countsByYear W42971543852023 @default.
- W4297154385 crossrefType "journal-article" @default.
- W4297154385 hasAuthorship W4297154385A5006333473 @default.
- W4297154385 hasAuthorship W4297154385A5060413120 @default.
- W4297154385 hasAuthorship W4297154385A5080143961 @default.
- W4297154385 hasAuthorship W4297154385A5091411849 @default.
- W4297154385 hasBestOaLocation W42971543851 @default.
- W4297154385 hasConcept C101738243 @default.
- W4297154385 hasConcept C103824480 @default.
- W4297154385 hasConcept C10551718 @default.
- W4297154385 hasConcept C108583219 @default.
- W4297154385 hasConcept C111919701 @default.
- W4297154385 hasConcept C11413529 @default.
- W4297154385 hasConcept C118505674 @default.
- W4297154385 hasConcept C121332964 @default.
- W4297154385 hasConcept C142433447 @default.
- W4297154385 hasConcept C153180895 @default.
- W4297154385 hasConcept C154945302 @default.
- W4297154385 hasConcept C15744967 @default.
- W4297154385 hasConcept C165801399 @default.
- W4297154385 hasConcept C169760540 @default.
- W4297154385 hasConcept C2778186239 @default.
- W4297154385 hasConcept C2779334592 @default.
- W4297154385 hasConcept C28490314 @default.
- W4297154385 hasConcept C31972630 @default.
- W4297154385 hasConcept C34736171 @default.
- W4297154385 hasConcept C41008148 @default.
- W4297154385 hasConcept C522805319 @default.
- W4297154385 hasConcept C554190296 @default.
- W4297154385 hasConcept C62520636 @default.
- W4297154385 hasConcept C66322947 @default.
- W4297154385 hasConcept C76155785 @default.
- W4297154385 hasConceptScore W4297154385C101738243 @default.
- W4297154385 hasConceptScore W4297154385C103824480 @default.
- W4297154385 hasConceptScore W4297154385C10551718 @default.
- W4297154385 hasConceptScore W4297154385C108583219 @default.
- W4297154385 hasConceptScore W4297154385C111919701 @default.
- W4297154385 hasConceptScore W4297154385C11413529 @default.
- W4297154385 hasConceptScore W4297154385C118505674 @default.
- W4297154385 hasConceptScore W4297154385C121332964 @default.
- W4297154385 hasConceptScore W4297154385C142433447 @default.
- W4297154385 hasConceptScore W4297154385C153180895 @default.
- W4297154385 hasConceptScore W4297154385C154945302 @default.
- W4297154385 hasConceptScore W4297154385C15744967 @default.