Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297180136> ?p ?o ?g. }
- W4297180136 endingPage "104812" @default.
- W4297180136 startingPage "104812" @default.
- W4297180136 abstract "In this research, a perspective of the dispersion relation of flexural waves on periodic structures is proposed. The rotational theory of micro-elements is stem to explore the favorable impact of size effect on structures through the localization of the strain energy. The panels are modelled as a one-dimensional (1-D) Micropolar–Cosserat (MC) continuum to explore the effect of length-scale or micro-rotational waves of solids. The spectral element formulation of a panel and the transfer matrix of the unit cell is presented within the framework of the state-space method. The propagation constant in the eigenvalue domain is established based on the Bloch–Floquet theorem to account for the periodicity of the panel. The MC theory in analyzing the band-gap (stop-band) and pass-band characteristics of the unit cell panels is validated by a commercial finite element software package-COMSOL Multiphysics. The mode shape of unit cell for the start and end point of band-gap is further analyzed within the realms of finite element method (FEM) analysis. The appropriate limiting condition reverts MC spectral element into Timoshenko (TM) beam model. The comparison of Timoshenko beam model with the spectral element of 1-D plane-stress (PS) analysis is also investigated. It is observed that the shear wave of the MC model is coupled with a micro-rotational wave of micro-elements, unlike the classical continuum framework. The response of the finite structure subjected to various frequencies is presented too. Presence of vibration attenuation in the specified band-gap (BG) is justified through the elemental dynamic stiffness (DS) matrix of unit cells. This reduced the level of vibration at the specific frequency range within the attenuation band or disintegrates it into two bands. The attenuation bandwidth and its location is significantly affected by the modulation of both geometry and material properties of the beam. Investigation of flexural wave propagation based on the proposed 1-D MC beam theory shows good agreement with the two-dimensional (2-D) plane-stress FEM analysis." @default.
- W4297180136 created "2022-09-27" @default.
- W4297180136 creator A5008587433 @default.
- W4297180136 creator A5014376413 @default.
- W4297180136 creator A5016798364 @default.
- W4297180136 creator A5052215136 @default.
- W4297180136 creator A5086097684 @default.
- W4297180136 date "2023-01-01" @default.
- W4297180136 modified "2023-09-26" @default.
- W4297180136 title "Flexural wave propagation in periodic Micropolar-Cosserat panels: Spectral Element Formulation" @default.
- W4297180136 cites W1964246964 @default.
- W4297180136 cites W1964879052 @default.
- W4297180136 cites W1972725907 @default.
- W4297180136 cites W1984062651 @default.
- W4297180136 cites W1988645496 @default.
- W4297180136 cites W1994982755 @default.
- W4297180136 cites W2004416241 @default.
- W4297180136 cites W2007143442 @default.
- W4297180136 cites W2014055894 @default.
- W4297180136 cites W2018462992 @default.
- W4297180136 cites W2020801604 @default.
- W4297180136 cites W2021884780 @default.
- W4297180136 cites W2022759797 @default.
- W4297180136 cites W2029286257 @default.
- W4297180136 cites W2032965004 @default.
- W4297180136 cites W2033653846 @default.
- W4297180136 cites W2036814795 @default.
- W4297180136 cites W204067937 @default.
- W4297180136 cites W2047622789 @default.
- W4297180136 cites W2050325073 @default.
- W4297180136 cites W2050942379 @default.
- W4297180136 cites W2053285429 @default.
- W4297180136 cites W2060725584 @default.
- W4297180136 cites W2063586630 @default.
- W4297180136 cites W2074272113 @default.
- W4297180136 cites W2079651024 @default.
- W4297180136 cites W2090780666 @default.
- W4297180136 cites W2095356744 @default.
- W4297180136 cites W2129949023 @default.
- W4297180136 cites W2142981749 @default.
- W4297180136 cites W2153566274 @default.
- W4297180136 cites W2164909729 @default.
- W4297180136 cites W2165290084 @default.
- W4297180136 cites W2166371162 @default.
- W4297180136 cites W2188176042 @default.
- W4297180136 cites W2213366769 @default.
- W4297180136 cites W2214706273 @default.
- W4297180136 cites W2236239653 @default.
- W4297180136 cites W2296031834 @default.
- W4297180136 cites W2332831731 @default.
- W4297180136 cites W2530554283 @default.
- W4297180136 cites W2533414737 @default.
- W4297180136 cites W2585909651 @default.
- W4297180136 cites W2653809028 @default.
- W4297180136 cites W2728097431 @default.
- W4297180136 cites W2770572129 @default.
- W4297180136 cites W2794153708 @default.
- W4297180136 cites W2800449606 @default.
- W4297180136 cites W2804920103 @default.
- W4297180136 cites W2884600537 @default.
- W4297180136 cites W2885202753 @default.
- W4297180136 cites W2895759857 @default.
- W4297180136 cites W2899534928 @default.
- W4297180136 cites W2909702590 @default.
- W4297180136 cites W2963476380 @default.
- W4297180136 cites W3018681439 @default.
- W4297180136 cites W3039464473 @default.
- W4297180136 cites W3045155168 @default.
- W4297180136 cites W3045670551 @default.
- W4297180136 cites W3081686871 @default.
- W4297180136 cites W3091808627 @default.
- W4297180136 cites W3096402367 @default.
- W4297180136 cites W3166562601 @default.
- W4297180136 cites W3177143380 @default.
- W4297180136 cites W3180408462 @default.
- W4297180136 cites W3193958184 @default.
- W4297180136 cites W3215346417 @default.
- W4297180136 cites W4206595243 @default.
- W4297180136 cites W4245288338 @default.
- W4297180136 doi "https://doi.org/10.1016/j.euromechsol.2022.104812" @default.
- W4297180136 hasPublicationYear "2023" @default.
- W4297180136 type Work @default.
- W4297180136 citedByCount "1" @default.
- W4297180136 countsByYear W42971801362023 @default.
- W4297180136 crossrefType "journal-article" @default.
- W4297180136 hasAuthorship W4297180136A5008587433 @default.
- W4297180136 hasAuthorship W4297180136A5014376413 @default.
- W4297180136 hasAuthorship W4297180136A5016798364 @default.
- W4297180136 hasAuthorship W4297180136A5052215136 @default.
- W4297180136 hasAuthorship W4297180136A5086097684 @default.
- W4297180136 hasBestOaLocation W42971801361 @default.
- W4297180136 hasConcept C120665830 @default.
- W4297180136 hasConcept C121332964 @default.
- W4297180136 hasConcept C134306372 @default.
- W4297180136 hasConcept C135628077 @default.
- W4297180136 hasConcept C190699663 @default.
- W4297180136 hasConcept C198394728 @default.
- W4297180136 hasConcept C24890656 @default.