Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297181604> ?p ?o ?g. }
- W4297181604 endingPage "103897" @default.
- W4297181604 startingPage "103897" @default.
- W4297181604 abstract "Conventional noise reduction algorithms have been used in image processing for a very long time, but recently, deep learning-based algorithms have been shown to significantly reduce the noise in CT images. In this paper, a comparison of CT noise reduction of a deep learning-based, a conventional, and their combined denoising algorithms is presented. A conventional adaptive 3D bilateral filter and a 2D deep learning-based noise reduction algorithm and a combination of these are compared. For comparison, we used the noise power spectrum and the task transfer function which were measured on original CT images and the effective dose saving factors were also calculated. The noise reduction effect, the noise power spectrum and the task-transfer function are studied using Catphan 600 phantom and 26 clinical cases with more than 100,000 images. We also show that the effect of noise reduction of a 2D deep learning-based algorithm can be further enhanced by using conventional 3D spatial noise reduction algorithms." @default.
- W4297181604 created "2022-09-27" @default.
- W4297181604 creator A5047994906 @default.
- W4297181604 creator A5049622291 @default.
- W4297181604 date "2022-11-01" @default.
- W4297181604 modified "2023-09-27" @default.
- W4297181604 title "Comparison of CT noise reduction performances with deep learning-based, conventional, and combined denoising algorithms" @default.
- W4297181604 cites W1983281817 @default.
- W4297181604 cites W2012946420 @default.
- W4297181604 cites W2035615314 @default.
- W4297181604 cites W2062878942 @default.
- W4297181604 cites W2101061092 @default.
- W4297181604 cites W2103559027 @default.
- W4297181604 cites W2119259145 @default.
- W4297181604 cites W2150134853 @default.
- W4297181604 cites W2154129661 @default.
- W4297181604 cites W2171697262 @default.
- W4297181604 cites W2471535707 @default.
- W4297181604 cites W2508457857 @default.
- W4297181604 cites W2562439620 @default.
- W4297181604 cites W2610769070 @default.
- W4297181604 cites W2904215359 @default.
- W4297181604 cites W2936378778 @default.
- W4297181604 cites W2943822408 @default.
- W4297181604 cites W2964327615 @default.
- W4297181604 cites W2969119144 @default.
- W4297181604 cites W2971089102 @default.
- W4297181604 cites W3013101927 @default.
- W4297181604 cites W3030204642 @default.
- W4297181604 cites W3033347005 @default.
- W4297181604 cites W3036484885 @default.
- W4297181604 cites W3042957015 @default.
- W4297181604 cites W3085504529 @default.
- W4297181604 cites W3087466727 @default.
- W4297181604 cites W3092367716 @default.
- W4297181604 cites W3103931084 @default.
- W4297181604 cites W3106045672 @default.
- W4297181604 cites W3110668506 @default.
- W4297181604 cites W3217710511 @default.
- W4297181604 cites W4206603379 @default.
- W4297181604 cites W4225633587 @default.
- W4297181604 doi "https://doi.org/10.1016/j.medengphy.2022.103897" @default.
- W4297181604 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36371081" @default.
- W4297181604 hasPublicationYear "2022" @default.
- W4297181604 type Work @default.
- W4297181604 citedByCount "4" @default.
- W4297181604 countsByYear W42971816042023 @default.
- W4297181604 crossrefType "journal-article" @default.
- W4297181604 hasAuthorship W4297181604A5047994906 @default.
- W4297181604 hasAuthorship W4297181604A5049622291 @default.
- W4297181604 hasConcept C104293457 @default.
- W4297181604 hasConcept C106131492 @default.
- W4297181604 hasConcept C108583219 @default.
- W4297181604 hasConcept C111335779 @default.
- W4297181604 hasConcept C113660513 @default.
- W4297181604 hasConcept C11413529 @default.
- W4297181604 hasConcept C115961682 @default.
- W4297181604 hasConcept C120665830 @default.
- W4297181604 hasConcept C121332964 @default.
- W4297181604 hasConcept C154945302 @default.
- W4297181604 hasConcept C163294075 @default.
- W4297181604 hasConcept C2524010 @default.
- W4297181604 hasConcept C29265498 @default.
- W4297181604 hasConcept C31972630 @default.
- W4297181604 hasConcept C33923547 @default.
- W4297181604 hasConcept C35772409 @default.
- W4297181604 hasConcept C41008148 @default.
- W4297181604 hasConcept C55352655 @default.
- W4297181604 hasConcept C9417928 @default.
- W4297181604 hasConcept C99498987 @default.
- W4297181604 hasConceptScore W4297181604C104293457 @default.
- W4297181604 hasConceptScore W4297181604C106131492 @default.
- W4297181604 hasConceptScore W4297181604C108583219 @default.
- W4297181604 hasConceptScore W4297181604C111335779 @default.
- W4297181604 hasConceptScore W4297181604C113660513 @default.
- W4297181604 hasConceptScore W4297181604C11413529 @default.
- W4297181604 hasConceptScore W4297181604C115961682 @default.
- W4297181604 hasConceptScore W4297181604C120665830 @default.
- W4297181604 hasConceptScore W4297181604C121332964 @default.
- W4297181604 hasConceptScore W4297181604C154945302 @default.
- W4297181604 hasConceptScore W4297181604C163294075 @default.
- W4297181604 hasConceptScore W4297181604C2524010 @default.
- W4297181604 hasConceptScore W4297181604C29265498 @default.
- W4297181604 hasConceptScore W4297181604C31972630 @default.
- W4297181604 hasConceptScore W4297181604C33923547 @default.
- W4297181604 hasConceptScore W4297181604C35772409 @default.
- W4297181604 hasConceptScore W4297181604C41008148 @default.
- W4297181604 hasConceptScore W4297181604C55352655 @default.
- W4297181604 hasConceptScore W4297181604C9417928 @default.
- W4297181604 hasConceptScore W4297181604C99498987 @default.
- W4297181604 hasFunder F4320323593 @default.
- W4297181604 hasLocation W42971816041 @default.
- W4297181604 hasLocation W42971816042 @default.
- W4297181604 hasOpenAccess W4297181604 @default.
- W4297181604 hasPrimaryLocation W42971816041 @default.
- W4297181604 hasRelatedWork W1969252538 @default.
- W4297181604 hasRelatedWork W1993096516 @default.
- W4297181604 hasRelatedWork W2014214892 @default.