Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297184384> ?p ?o ?g. }
- W4297184384 abstract "Missing data are ubiquitous in randomised controlled trials. Although sensitivity analyses for different missing data mechanisms (missing at random vs. missing not at random) are widely recommended, they are rarely conducted in practice. The aim of the present study was to demonstrate sensitivity analyses for different assumptions regarding the missing data mechanism for randomised controlled trials using latent growth modelling (LGM).Data from a randomised controlled brief alcohol intervention trial was used. The sample included 1646 adults (56% female; mean age = 31.0 years) from the general population who had received up to three individualized alcohol feedback letters or assessment-only. Follow-up interviews were conducted after 12 and 36 months via telephone. The main outcome for the analysis was change in alcohol use over time. A three-step LGM approach was used. First, evidence about the process that generated the missing data was accumulated by analysing the extent of missing values in both study conditions, missing data patterns, and baseline variables that predicted participation in the two follow-up assessments using logistic regression. Second, growth models were calculated to analyse intervention effects over time. These models assumed that data were missing at random and applied full-information maximum likelihood estimation. Third, the findings were safeguarded by incorporating model components to account for the possibility that data were missing not at random. For that purpose, Diggle-Kenward selection, Wu-Carroll shared parameter and pattern mixture models were implemented.Although the true data generating process remained unknown, the evidence was unequivocal: both the intervention and control group reduced their alcohol use over time, but no significant group differences emerged. There was no clear evidence for intervention efficacy, neither in the growth models that assumed the missing data to be at random nor those that assumed the missing data to be not at random.The illustrated approach allows the assessment of how sensitive conclusions about the efficacy of an intervention are to different assumptions regarding the missing data mechanism. For researchers familiar with LGM, it is a valuable statistical supplement to safeguard their findings against the possibility of nonignorable missingness.The PRINT trial was prospectively registered at the German Clinical Trials Register (DRKS00014274, date of registration: 12th March 2018)." @default.
- W4297184384 created "2022-09-27" @default.
- W4297184384 creator A5002484586 @default.
- W4297184384 creator A5023080662 @default.
- W4297184384 creator A5053347571 @default.
- W4297184384 creator A5058046103 @default.
- W4297184384 creator A5060254076 @default.
- W4297184384 creator A5082181415 @default.
- W4297184384 creator A5089998716 @default.
- W4297184384 date "2022-09-24" @default.
- W4297184384 modified "2023-10-09" @default.
- W4297184384 title "Sensitivity analyses for data missing at random versus missing not at random using latent growth modelling: a practical guide for randomised controlled trials" @default.
- W4297184384 cites W1555759070 @default.
- W4297184384 cites W1623791761 @default.
- W4297184384 cites W1854329019 @default.
- W4297184384 cites W1996823741 @default.
- W4297184384 cites W2009432182 @default.
- W4297184384 cites W2020761812 @default.
- W4297184384 cites W2047852693 @default.
- W4297184384 cites W2049039935 @default.
- W4297184384 cites W2057270012 @default.
- W4297184384 cites W2061410297 @default.
- W4297184384 cites W2063185787 @default.
- W4297184384 cites W2079875205 @default.
- W4297184384 cites W2085508623 @default.
- W4297184384 cites W2088554722 @default.
- W4297184384 cites W2095437242 @default.
- W4297184384 cites W2096009052 @default.
- W4297184384 cites W2099891228 @default.
- W4297184384 cites W2100358124 @default.
- W4297184384 cites W2101687707 @default.
- W4297184384 cites W2110117912 @default.
- W4297184384 cites W2110140939 @default.
- W4297184384 cites W2111202598 @default.
- W4297184384 cites W2120079020 @default.
- W4297184384 cites W2124866349 @default.
- W4297184384 cites W2136175013 @default.
- W4297184384 cites W2136669583 @default.
- W4297184384 cites W2139122730 @default.
- W4297184384 cites W2139972977 @default.
- W4297184384 cites W2166091513 @default.
- W4297184384 cites W2168175751 @default.
- W4297184384 cites W2168622268 @default.
- W4297184384 cites W2172036914 @default.
- W4297184384 cites W2262134418 @default.
- W4297184384 cites W2267019052 @default.
- W4297184384 cites W2284967628 @default.
- W4297184384 cites W2336938822 @default.
- W4297184384 cites W2591492265 @default.
- W4297184384 cites W2604779588 @default.
- W4297184384 cites W2761485686 @default.
- W4297184384 cites W2766439713 @default.
- W4297184384 cites W2792495663 @default.
- W4297184384 cites W2800123512 @default.
- W4297184384 cites W2888161953 @default.
- W4297184384 cites W2888814952 @default.
- W4297184384 cites W2904205930 @default.
- W4297184384 cites W2918061388 @default.
- W4297184384 cites W3005679560 @default.
- W4297184384 cites W3045827281 @default.
- W4297184384 cites W3097054228 @default.
- W4297184384 cites W3119192199 @default.
- W4297184384 cites W3124978917 @default.
- W4297184384 cites W3127505053 @default.
- W4297184384 cites W3141400352 @default.
- W4297184384 cites W3167065122 @default.
- W4297184384 cites W3167431989 @default.
- W4297184384 cites W3175149165 @default.
- W4297184384 cites W4243155135 @default.
- W4297184384 cites W4297068841 @default.
- W4297184384 doi "https://doi.org/10.1186/s12874-022-01727-1" @default.
- W4297184384 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36153489" @default.
- W4297184384 hasPublicationYear "2022" @default.
- W4297184384 type Work @default.
- W4297184384 citedByCount "0" @default.
- W4297184384 crossrefType "journal-article" @default.
- W4297184384 hasAuthorship W4297184384A5002484586 @default.
- W4297184384 hasAuthorship W4297184384A5023080662 @default.
- W4297184384 hasAuthorship W4297184384A5053347571 @default.
- W4297184384 hasAuthorship W4297184384A5058046103 @default.
- W4297184384 hasAuthorship W4297184384A5060254076 @default.
- W4297184384 hasAuthorship W4297184384A5082181415 @default.
- W4297184384 hasAuthorship W4297184384A5089998716 @default.
- W4297184384 hasBestOaLocation W42971843841 @default.
- W4297184384 hasConcept C105795698 @default.
- W4297184384 hasConcept C126322002 @default.
- W4297184384 hasConcept C129848803 @default.
- W4297184384 hasConcept C151956035 @default.
- W4297184384 hasConcept C168563851 @default.
- W4297184384 hasConcept C168743327 @default.
- W4297184384 hasConcept C2908647359 @default.
- W4297184384 hasConcept C33923547 @default.
- W4297184384 hasConcept C71924100 @default.
- W4297184384 hasConcept C9357733 @default.
- W4297184384 hasConcept C95190672 @default.
- W4297184384 hasConcept C99454951 @default.
- W4297184384 hasConceptScore W4297184384C105795698 @default.
- W4297184384 hasConceptScore W4297184384C126322002 @default.
- W4297184384 hasConceptScore W4297184384C129848803 @default.
- W4297184384 hasConceptScore W4297184384C151956035 @default.