Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297198687> ?p ?o ?g. }
- W4297198687 endingPage "2977" @default.
- W4297198687 startingPage "2977" @default.
- W4297198687 abstract "Single-probe near-infrared spectroscopy (NIRS) usually uses different spectral information for modelling, but there are few reports about its influence on model performance. Based on sized-adaptive online NIRS information and the 2D conventional neural network (CNN), minced samples of pure mutton, pork, duck, and adulterated mutton with pork/duck were classified in this study. The influence of spectral information, convolution kernel sizes, and classifiers on model performance was separately explored. The results showed that spectral information had a great influence on model accuracy, of which the maximum difference could reach up to 12.06% for the same validation set. The convolution kernel sizes and classifiers had little effect on model accuracy but had significant influence on classification speed. For all datasets, the accuracy of the CNN model with mean spectral information per direction, extreme learning machine (ELM) classifier, and 7 × 7 convolution kernel was higher than 99.56%. Considering the rapidity and practicality, this study provides a fast and accurate method for online classification of adulterated mutton." @default.
- W4297198687 created "2022-09-27" @default.
- W4297198687 creator A5000460824 @default.
- W4297198687 creator A5021860602 @default.
- W4297198687 creator A5024615515 @default.
- W4297198687 creator A5025413544 @default.
- W4297198687 creator A5028612334 @default.
- W4297198687 creator A5080904291 @default.
- W4297198687 date "2022-09-23" @default.
- W4297198687 modified "2023-10-12" @default.
- W4297198687 title "Discrimination of Minced Mutton Adulteration Based on Sized-Adaptive Online NIRS Information and 2D Conventional Neural Network" @default.
- W4297198687 cites W1189783812 @default.
- W4297198687 cites W2032241019 @default.
- W4297198687 cites W2051556092 @default.
- W4297198687 cites W2066536516 @default.
- W4297198687 cites W2332243341 @default.
- W4297198687 cites W2418582304 @default.
- W4297198687 cites W2439534815 @default.
- W4297198687 cites W2465558286 @default.
- W4297198687 cites W2517598636 @default.
- W4297198687 cites W2520364485 @default.
- W4297198687 cites W2622748986 @default.
- W4297198687 cites W2900382869 @default.
- W4297198687 cites W2903091095 @default.
- W4297198687 cites W2904863800 @default.
- W4297198687 cites W2905421928 @default.
- W4297198687 cites W2914424871 @default.
- W4297198687 cites W2914940312 @default.
- W4297198687 cites W2925338233 @default.
- W4297198687 cites W2936076631 @default.
- W4297198687 cites W2939053413 @default.
- W4297198687 cites W2950204468 @default.
- W4297198687 cites W2988279375 @default.
- W4297198687 cites W3000711555 @default.
- W4297198687 cites W3007197850 @default.
- W4297198687 cites W3013523275 @default.
- W4297198687 cites W3024949463 @default.
- W4297198687 cites W3089216792 @default.
- W4297198687 cites W3093277599 @default.
- W4297198687 cites W3129273738 @default.
- W4297198687 cites W4205550762 @default.
- W4297198687 cites W4220756199 @default.
- W4297198687 cites W4221031187 @default.
- W4297198687 cites W4280552125 @default.
- W4297198687 cites W4285596615 @default.
- W4297198687 cites W4290079709 @default.
- W4297198687 cites W588489631 @default.
- W4297198687 doi "https://doi.org/10.3390/foods11192977" @default.
- W4297198687 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36230054" @default.
- W4297198687 hasPublicationYear "2022" @default.
- W4297198687 type Work @default.
- W4297198687 citedByCount "1" @default.
- W4297198687 crossrefType "journal-article" @default.
- W4297198687 hasAuthorship W4297198687A5000460824 @default.
- W4297198687 hasAuthorship W4297198687A5021860602 @default.
- W4297198687 hasAuthorship W4297198687A5024615515 @default.
- W4297198687 hasAuthorship W4297198687A5025413544 @default.
- W4297198687 hasAuthorship W4297198687A5028612334 @default.
- W4297198687 hasAuthorship W4297198687A5080904291 @default.
- W4297198687 hasBestOaLocation W42971986871 @default.
- W4297198687 hasConcept C114614502 @default.
- W4297198687 hasConcept C153180895 @default.
- W4297198687 hasConcept C154945302 @default.
- W4297198687 hasConcept C177264268 @default.
- W4297198687 hasConcept C199360897 @default.
- W4297198687 hasConcept C33923547 @default.
- W4297198687 hasConcept C41008148 @default.
- W4297198687 hasConcept C45347329 @default.
- W4297198687 hasConcept C50644808 @default.
- W4297198687 hasConcept C74193536 @default.
- W4297198687 hasConcept C81363708 @default.
- W4297198687 hasConcept C95623464 @default.
- W4297198687 hasConceptScore W4297198687C114614502 @default.
- W4297198687 hasConceptScore W4297198687C153180895 @default.
- W4297198687 hasConceptScore W4297198687C154945302 @default.
- W4297198687 hasConceptScore W4297198687C177264268 @default.
- W4297198687 hasConceptScore W4297198687C199360897 @default.
- W4297198687 hasConceptScore W4297198687C33923547 @default.
- W4297198687 hasConceptScore W4297198687C41008148 @default.
- W4297198687 hasConceptScore W4297198687C45347329 @default.
- W4297198687 hasConceptScore W4297198687C50644808 @default.
- W4297198687 hasConceptScore W4297198687C74193536 @default.
- W4297198687 hasConceptScore W4297198687C81363708 @default.
- W4297198687 hasConceptScore W4297198687C95623464 @default.
- W4297198687 hasFunder F4320321001 @default.
- W4297198687 hasIssue "19" @default.
- W4297198687 hasLocation W42971986871 @default.
- W4297198687 hasLocation W42971986872 @default.
- W4297198687 hasLocation W42971986873 @default.
- W4297198687 hasOpenAccess W4297198687 @default.
- W4297198687 hasPrimaryLocation W42971986871 @default.
- W4297198687 hasRelatedWork W2964954556 @default.
- W4297198687 hasRelatedWork W2982536526 @default.
- W4297198687 hasRelatedWork W3008689640 @default.
- W4297198687 hasRelatedWork W3019910406 @default.
- W4297198687 hasRelatedWork W3034421924 @default.
- W4297198687 hasRelatedWork W3081626085 @default.
- W4297198687 hasRelatedWork W4321523777 @default.