Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297199749> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4297199749 endingPage "114" @default.
- W4297199749 startingPage "106" @default.
- W4297199749 abstract "AbstractQuestion Answering (QA) is a critical NLP task mainly based on deep learning models that allow users to answer questions in natural language and get a response. Since available general-purpose datasets are often not effective enough to suitably train a QA model, one of the main problems in this context is related to the availability of datasets which fit the considered context. Moreover, such datasets are generally in English, making QA system design in different languages difficult. To alleviate the above-depicted issues, in this work, we propose a framework which automatically generates a dataset for a given language and a given topic. To train our system in any language, an alternative way to evaluate the quality of the answers is needed, so we propose a novel unsupervised method. To test the proposed technique, we generate a dataset for the topic “computer science” and the language “Italian” and compare the performance of a QA system trained on available datasets and the built one." @default.
- W4297199749 created "2022-09-27" @default.
- W4297199749 creator A5036911190 @default.
- W4297199749 creator A5073104892 @default.
- W4297199749 creator A5075369704 @default.
- W4297199749 creator A5090380495 @default.
- W4297199749 date "2022-01-01" @default.
- W4297199749 modified "2023-10-17" @default.
- W4297199749 title "A Semi-automatic Data Generator for Query Answering" @default.
- W4297199749 cites W2251818205 @default.
- W4297199749 cites W2557764419 @default.
- W4297199749 cites W2798658104 @default.
- W4297199749 cites W2888302696 @default.
- W4297199749 cites W2900356614 @default.
- W4297199749 cites W2951181836 @default.
- W4297199749 cites W2963323070 @default.
- W4297199749 cites W2963339397 @default.
- W4297199749 cites W2963748441 @default.
- W4297199749 cites W2963963993 @default.
- W4297199749 cites W2964223283 @default.
- W4297199749 cites W2998733856 @default.
- W4297199749 cites W3174544005 @default.
- W4297199749 cites W4288086191 @default.
- W4297199749 doi "https://doi.org/10.1007/978-3-031-16564-1_11" @default.
- W4297199749 hasPublicationYear "2022" @default.
- W4297199749 type Work @default.
- W4297199749 citedByCount "0" @default.
- W4297199749 crossrefType "book-chapter" @default.
- W4297199749 hasAuthorship W4297199749A5036911190 @default.
- W4297199749 hasAuthorship W4297199749A5073104892 @default.
- W4297199749 hasAuthorship W4297199749A5075369704 @default.
- W4297199749 hasAuthorship W4297199749A5090380495 @default.
- W4297199749 hasConcept C111472728 @default.
- W4297199749 hasConcept C119857082 @default.
- W4297199749 hasConcept C121332964 @default.
- W4297199749 hasConcept C137293760 @default.
- W4297199749 hasConcept C138885662 @default.
- W4297199749 hasConcept C151730666 @default.
- W4297199749 hasConcept C154945302 @default.
- W4297199749 hasConcept C162324750 @default.
- W4297199749 hasConcept C163258240 @default.
- W4297199749 hasConcept C187736073 @default.
- W4297199749 hasConcept C195324797 @default.
- W4297199749 hasConcept C204321447 @default.
- W4297199749 hasConcept C23123220 @default.
- W4297199749 hasConcept C2779343474 @default.
- W4297199749 hasConcept C2779530757 @default.
- W4297199749 hasConcept C2780451532 @default.
- W4297199749 hasConcept C2780992000 @default.
- W4297199749 hasConcept C41008148 @default.
- W4297199749 hasConcept C44291984 @default.
- W4297199749 hasConcept C62520636 @default.
- W4297199749 hasConcept C86803240 @default.
- W4297199749 hasConceptScore W4297199749C111472728 @default.
- W4297199749 hasConceptScore W4297199749C119857082 @default.
- W4297199749 hasConceptScore W4297199749C121332964 @default.
- W4297199749 hasConceptScore W4297199749C137293760 @default.
- W4297199749 hasConceptScore W4297199749C138885662 @default.
- W4297199749 hasConceptScore W4297199749C151730666 @default.
- W4297199749 hasConceptScore W4297199749C154945302 @default.
- W4297199749 hasConceptScore W4297199749C162324750 @default.
- W4297199749 hasConceptScore W4297199749C163258240 @default.
- W4297199749 hasConceptScore W4297199749C187736073 @default.
- W4297199749 hasConceptScore W4297199749C195324797 @default.
- W4297199749 hasConceptScore W4297199749C204321447 @default.
- W4297199749 hasConceptScore W4297199749C23123220 @default.
- W4297199749 hasConceptScore W4297199749C2779343474 @default.
- W4297199749 hasConceptScore W4297199749C2779530757 @default.
- W4297199749 hasConceptScore W4297199749C2780451532 @default.
- W4297199749 hasConceptScore W4297199749C2780992000 @default.
- W4297199749 hasConceptScore W4297199749C41008148 @default.
- W4297199749 hasConceptScore W4297199749C44291984 @default.
- W4297199749 hasConceptScore W4297199749C62520636 @default.
- W4297199749 hasConceptScore W4297199749C86803240 @default.
- W4297199749 hasLocation W42971997491 @default.
- W4297199749 hasOpenAccess W4297199749 @default.
- W4297199749 hasPrimaryLocation W42971997491 @default.
- W4297199749 hasRelatedWork W1483367581 @default.
- W4297199749 hasRelatedWork W15319282 @default.
- W4297199749 hasRelatedWork W1556931475 @default.
- W4297199749 hasRelatedWork W1563618553 @default.
- W4297199749 hasRelatedWork W1602736231 @default.
- W4297199749 hasRelatedWork W207304934 @default.
- W4297199749 hasRelatedWork W2251823351 @default.
- W4297199749 hasRelatedWork W2747680751 @default.
- W4297199749 hasRelatedWork W2970044932 @default.
- W4297199749 hasRelatedWork W3207693618 @default.
- W4297199749 isParatext "false" @default.
- W4297199749 isRetracted "false" @default.
- W4297199749 workType "book-chapter" @default.