Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297200214> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4297200214 endingPage "126" @default.
- W4297200214 startingPage "117" @default.
- W4297200214 abstract "AbstractAdversarial training is an effective learning approach to harden deep neural models against adversarial examples. In this paper, we explore the accuracy of adversarial training in cybersecurity. In addition, we use an XAI technique to analyze how certain input features may have an effect on decisions yielded with adversarial training giving the security analyst much better insight into robustness of features. Finally, we start the investigation of how XAI can be used for robust features selection within adversarial training in cybersecurity problems.KeywordsCybersecurityDeep learningXAIAdversarial trainingFeatures selection" @default.
- W4297200214 created "2022-09-27" @default.
- W4297200214 creator A5035789137 @default.
- W4297200214 creator A5055560733 @default.
- W4297200214 creator A5064688726 @default.
- W4297200214 creator A5079873470 @default.
- W4297200214 date "2022-01-01" @default.
- W4297200214 modified "2023-09-27" @default.
- W4297200214 title "XAI to Explore Robustness of Features in Adversarial Training for Cybersecurity" @default.
- W4297200214 cites W1566534361 @default.
- W4297200214 cites W2902900716 @default.
- W4297200214 cites W2959587146 @default.
- W4297200214 cites W2969231300 @default.
- W4297200214 cites W2995778637 @default.
- W4297200214 cites W3015481738 @default.
- W4297200214 cites W3017093935 @default.
- W4297200214 cites W3096425977 @default.
- W4297200214 cites W3110852669 @default.
- W4297200214 cites W3180062783 @default.
- W4297200214 cites W3187541268 @default.
- W4297200214 cites W3191453585 @default.
- W4297200214 cites W3204683301 @default.
- W4297200214 cites W3208097639 @default.
- W4297200214 cites W3210231570 @default.
- W4297200214 cites W3214977413 @default.
- W4297200214 cites W4212986280 @default.
- W4297200214 cites W4224249813 @default.
- W4297200214 cites W4288072399 @default.
- W4297200214 doi "https://doi.org/10.1007/978-3-031-16564-1_12" @default.
- W4297200214 hasPublicationYear "2022" @default.
- W4297200214 type Work @default.
- W4297200214 citedByCount "0" @default.
- W4297200214 crossrefType "book-chapter" @default.
- W4297200214 hasAuthorship W4297200214A5035789137 @default.
- W4297200214 hasAuthorship W4297200214A5055560733 @default.
- W4297200214 hasAuthorship W4297200214A5064688726 @default.
- W4297200214 hasAuthorship W4297200214A5079873470 @default.
- W4297200214 hasConcept C104317684 @default.
- W4297200214 hasConcept C119857082 @default.
- W4297200214 hasConcept C121332964 @default.
- W4297200214 hasConcept C124101348 @default.
- W4297200214 hasConcept C153294291 @default.
- W4297200214 hasConcept C154945302 @default.
- W4297200214 hasConcept C185592680 @default.
- W4297200214 hasConcept C2777211547 @default.
- W4297200214 hasConcept C2984842247 @default.
- W4297200214 hasConcept C37736160 @default.
- W4297200214 hasConcept C38652104 @default.
- W4297200214 hasConcept C41008148 @default.
- W4297200214 hasConcept C41065033 @default.
- W4297200214 hasConcept C50644808 @default.
- W4297200214 hasConcept C51632099 @default.
- W4297200214 hasConcept C55493867 @default.
- W4297200214 hasConcept C63479239 @default.
- W4297200214 hasConcept C81917197 @default.
- W4297200214 hasConceptScore W4297200214C104317684 @default.
- W4297200214 hasConceptScore W4297200214C119857082 @default.
- W4297200214 hasConceptScore W4297200214C121332964 @default.
- W4297200214 hasConceptScore W4297200214C124101348 @default.
- W4297200214 hasConceptScore W4297200214C153294291 @default.
- W4297200214 hasConceptScore W4297200214C154945302 @default.
- W4297200214 hasConceptScore W4297200214C185592680 @default.
- W4297200214 hasConceptScore W4297200214C2777211547 @default.
- W4297200214 hasConceptScore W4297200214C2984842247 @default.
- W4297200214 hasConceptScore W4297200214C37736160 @default.
- W4297200214 hasConceptScore W4297200214C38652104 @default.
- W4297200214 hasConceptScore W4297200214C41008148 @default.
- W4297200214 hasConceptScore W4297200214C41065033 @default.
- W4297200214 hasConceptScore W4297200214C50644808 @default.
- W4297200214 hasConceptScore W4297200214C51632099 @default.
- W4297200214 hasConceptScore W4297200214C55493867 @default.
- W4297200214 hasConceptScore W4297200214C63479239 @default.
- W4297200214 hasConceptScore W4297200214C81917197 @default.
- W4297200214 hasLocation W42972002141 @default.
- W4297200214 hasOpenAccess W4297200214 @default.
- W4297200214 hasPrimaryLocation W42972002141 @default.
- W4297200214 hasRelatedWork W2230740169 @default.
- W4297200214 hasRelatedWork W2610321374 @default.
- W4297200214 hasRelatedWork W2924591601 @default.
- W4297200214 hasRelatedWork W2952919291 @default.
- W4297200214 hasRelatedWork W2963894298 @default.
- W4297200214 hasRelatedWork W3013699911 @default.
- W4297200214 hasRelatedWork W3035729345 @default.
- W4297200214 hasRelatedWork W3193857078 @default.
- W4297200214 hasRelatedWork W4297846880 @default.
- W4297200214 hasRelatedWork W4301726735 @default.
- W4297200214 isParatext "false" @default.
- W4297200214 isRetracted "false" @default.
- W4297200214 workType "book-chapter" @default.